Equality of two measures on a generated $\sigma$-algebra.

Let $(\Omega, \mathcal{F})$ be a measurable space and $\mathcal{E} \subset \mathcal{P}(\Omega)$ a generator of $\mathcal{F}$, i.e. $\mathcal{F}$ is the intersection of all $\sigma$-algebras that contain $\mathcal{E}$. Now let $\mu$ and $\nu$ be two measures on $(\Omega, \mathcal{F})$ such that

(i) $\mathcal{E}$ is closed under intersection, i.e.:  $A,B \in \mathcal{E} \implies A \cap B \in \mathcal{E}$, and

(ii) $\mu(A) = \nu(A) \quad \forall A \in \mathcal{E}$

Prove that $\mu = \nu$.

  • Mathe Mathe

    What do you mean by Pot(Ω)?

  • Mathe Mathe

    I suppose it means Power Set. I believe this advanced question merits a larger bounty.

  • Erdos Erdos

    If you want to know what a fair bounty should be, just think about how much time one may need to spend to answer the question, and how much the time of such individual is worth.

  • Mathe Mathe

    One also needs to assume that \mu(\Omega) = \nu(\Omega)

  • Mathe Mathe

    One also needs to assume that \mu(\Omega) = \nu(\Omega) and that they are finite.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer

1 Attachment

Mathe Mathe
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.