Plot real and imaginary part, modulus, phase and imaginary plane for a CFT transform given by equation on f from -4Hz to 4Hz

I'm trying to understand the basics of signal processing and I encountered this kind of a problem:

A CFT transform is given by
$$Y(f)=X(f)\cdot H(f)$$
$$X(f) = \Pi (\dfrac{f+1}{4})-j\cdot \Pi(\dfrac{f-1}{4})$$
$$H(f) = \Pi (\dfrac{f}{4})-j\cdot \Pi(\dfrac{f}{4})$$

I'm trying to plot the real and imaginary part of the CFT transform, as well as the modulus, phase and imaginary plane. However, I'm not really getting anywhere and would really appreciate help here - how do I go about this kind of task?

  • Mathe Mathe

    What is CFT?

  • What are \Pi and j here?

  • Aman R Aman R

    Define your pi function

  • M F H M F H

    I guess the Pi function is the "door" = 1 on (-1/2, 1/2) and zero elsewhere, and I will answer accordingly. Let us know if the assumption is not accurate.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
  • Some symbols and images are broken, I see question marks instead of them. Could you please correct this?

    • M F H M F H

      Yes, I notice that, I'm fixing it progresssively . (When editing they appear correctly so it is slightly complicated, I need to save each time to see what's not yet OK ...)

  • M F H M F H

    I hope all is fixed now. You can also see it at

  • M F H M F H

    I fixed a few more bugs (pi vs Pi ...) the editor has introduced after subsequent edits, against my will....

  • Thanks a lot!

The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.