Find the limit as x-->0 for y = (e^x- 1)/[sin(nx)]
Find the limit as x-> 0 for y = (e^x- 1)/[sin(nx)]
a. Using L’Hopital’s rule
b. Using the series approximation of e^u = 1 + u and sin(u) = u for u << 1
60
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1102 views
- $15.00
Related Questions
- Prove that $tan x +cot x=sec x csc x$
- You have 100 feet of cardboard. You need to make a box with a square bottom, 4 sides, but no top.
- What is this question asking and how do you solve it?
- Is $\int_1^{\infty}\frac{x+\sqrt{x}+\sin x}{x^2-x+1}dx$ convergent?
- Improper integral convergence
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Graphing question