Internal rate of return
1 Answer
Using the formula for geometric series (https://en.wikipedia.org/wiki/Geometric_series) we get
$$NPV= -A+\sum_{t=0}^{T} \frac{EZU}{(1+EZF)^t}=-A+EZU(\frac{1-(1+EZF)^{T+1}}{1-(1+EZF)}) $$
\[=-A+\frac{EZU}{EZF}[(1+EZF)^{T+1}-1].\]
Hence
\[\frac{(1+EZF)^{T+1}-1}{EZF}=\frac{(NPV+A)}{EZU}.\]
This equation can not be explicitly solved in terms of $EZF$ and one needs to solve it numerically.

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 352 views
- Pro Bono
Related Questions
- Integrate $\int e^{\sqrt{x}}dx$
- Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
- < Derivative of a periodic function.
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- Exercise on Ito's rule for two correlated stocks.
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Sinusodial graph help (electrical)