$\int(\frac{1}{\sqrt{x}})\sin(\frac{1}{x}) dx$
1 Answer
No, it can not be written in terms of elementary functions. Indeed
\[\int \frac{1}{\sqrt{x}}\sin(\frac{1}{x})dx=2\sin\left(\dfrac{1}{x}\right)\sqrt{x}-2^\frac{3}{2}\sqrt{{\pi}}\operatorname{G}\left(\dfrac{\sqrt{2}}{\sqrt{{\pi}}\sqrt{x}}\right)+C,\]
where $G$ is the Fresnel integral
\[G(u)=\int \cos (\frac{\pi u^2}{2})du.\]
Use the following website for more details: https://www.integral-calculator.com/
For more information about Fresnel integrals see https://en.wikipedia.org/wiki/Fresnel_integral
-
Oh okay thanks for the answer. But would I be able to come to this solution on paper within reasonable time, or is it something that requires the aid of an advanced calculator
-
Yes, you just need to do an integration by parts and some basic change of variables. I suggest you to use the first website I mentioned above. It will show you the computations.
-
- 1 Answer
- 446 views
- Pro Bono
Related Questions
- Finding absolute and relative extrema given an equation.
- Differentiate $\int_{\sin x}^{\ln x} e^{\tan t}dt$
- Prove the trig identity $\frac{\sin x +\tan x}{1+\sec x}=\sin x$
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Evaluate$\int \sqrt{\tan x}dx$
- Differentiate $f(x)=\int_{\sin x}^{2} \ln (\cos u) du$
- Solve only for the multiple choice part, the answer for the first box is 0
I revised your question. Double check to see if it is what you meant to ask.
Yes thank you very much