Find a general solution for $\int at^ne^{bt}dt$, where $n$ is any integer, and $a$ and $b$ are real constants.
Find a general solution for $\int at^ne^{bt}dt$, where $n$ is any integer, and $a$ and $b$ are real constants.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
2K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 591 views
- $7.00
Related Questions
- What is f(x). I've been trying to understand it for so long, but I always get different answers, I feel like I'm going crazy. Please someone explain it and read my whole question carefully.
- Integrate $\int_0^1\int_{\sqrt{x}}^{1}e^{y^3}dydx$
- Please answer the attached question about Riemann integrals
- Evaluate $\int \sin x \sqrt{1+\cos x} dx$
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks