What's the shape of ax^2+bx+c=0 equation?
1 Answer
Note that $ax^2+bx+c=0$ and $y=ax^2+bx+c$ are completely different objects. The former is an equation and the latter is a function.
The quadratic equation $ax^2+bx+c=0$ has two solutions
\[x=\frac{-b+\sqrt{b^2-4ac}}{2a}, x=\frac{-b-\sqrt{b^2-4ac}}{2a} \]
provided $b^2-4ac>0$. Note that these are equations of two veritical lines. If the equation has only one solution ($b^2-4ac=0$), then $ax^2+bx+c=0$ would represent only one straight line. That's why you are getting two straight lines.
However, if you mean $y=ax^2+bx+c$, then it represents the graph of a parabola.

200
-
Thank you for your explanation
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 450 views
- Pro Bono
Related Questions
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Multiplying Polynomials
- Allocation of Price and Volume changes to a change in Rate
- Find an expression for the total area of the figure expressed by x.
- Value Of Investment
- Zariski Topology and Regular Functions on Algebraic Varieties in Affine Space
- Artin-Wedderburn isomorphism of $\mathbb{C}[S_3]$