What's the shape of ax^2+bx+c=0 equation?
1 Answer
Note that $ax^2+bx+c=0$ and $y=ax^2+bx+c$ are completely different objects. The former is an equation and the latter is a function.
The quadratic equation $ax^2+bx+c=0$ has two solutions
\[x=\frac{-b+\sqrt{b^2-4ac}}{2a}, x=\frac{-b-\sqrt{b^2-4ac}}{2a} \]
provided $b^2-4ac>0$. Note that these are equations of two veritical lines. If the equation has only one solution ($b^2-4ac=0$), then $ax^2+bx+c=0$ would represent only one straight line. That's why you are getting two straight lines.
However, if you mean $y=ax^2+bx+c$, then it represents the graph of a parabola.

191
-
Thank you for your explanation
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- 1 Answer
- 152 views
- Pro Bono
Related Questions
- How do you go about solving this question?
- Graph Equation from Test
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates
- Representation theory question
- Algebra 2 help Please find attachment
- Algebra Question
- Equation from Test