How do you solve for 2 free variables? Or at least one of them?
So I have a set of 3 equations with 5 variables each; a, b, c, d, and e.
Xf=X1a+X2b+X3c+X4d+X5e
Yf=Y1a+Y2b+Y3c+Y4d+Y5e
Zf=Z1a+Z2b+Z3c+Z4d+Z5e
After I put it through a matrix I'm left with 3 new equations in the form of;
a =Xf+ X4d+X5e
b = Yf+Y4d+Y5e
c = Zf+Z4d+Z5e
(I didn't know how to do subscript)Keep in mind that a, b, c, d, and e are the same as the same variable in each equation. Is there any way to solve for d and e?
1 Answer
Suppose we have
a =Xf+ X4d+X5e
b = Yf+Y4d+Y5e
c = Zf+Z4d+Z5e
Then
X4d+X5e=a -Xf
Y4d+Y5e =b -Yf
Z4d+Z5e= c -Zf
This is a linear system of equations with 2 unknowns and 3 equations. In general, such equation does not have a solution, unless the equations are not linearly independent, i.e., one of the equations is a linear combination of the other two.
- 1 Answer
- 277 views
- Pro Bono
Related Questions
- Consider the plane in R^4 , calculate an orthonormal basis
- Linear independence of functions
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks
- Determine and compute the elementary matrices: Linear Algebra
- Advice for proving existence claims
- Certain isometry overfinite ring is product of isometries over each local factor
- Find where this discrete 3D spiral converges in explict terms
- Question on Subspaces
Your question does not make sense to me. What do you mean by "After I put it through a matrix"? In general, in order to solve linear equations the number of variables and equations should be equal.
To reduce the first set of equations I put it into a 3x6 matrix. I'm aware that leaves d and e as free variables, I'm wondering if there is a way to solve for them.