How do you solve for 2 free variables? Or at least one of them?
So I have a set of 3 equations with 5 variables each; a, b, c, d, and e.
Xf=X1a+X2b+X3c+X4d+X5e
Yf=Y1a+Y2b+Y3c+Y4d+Y5e
Zf=Z1a+Z2b+Z3c+Z4d+Z5e
After I put it through a matrix I'm left with 3 new equations in the form of;
a =Xf+ X4d+X5e
b = Yf+Y4d+Y5e
c = Zf+Z4d+Z5e
(I didn't know how to do subscript)Keep in mind that a, b, c, d, and e are the same as the same variable in each equation. Is there any way to solve for d and e?
1 Answer
Suppose we have
a =Xf+ X4d+X5e
b = Yf+Y4d+Y5e
c = Zf+Z4d+Z5e
Then
X4d+X5e=a -Xf
Y4d+Y5e =b -Yf
Z4d+Z5e= c -Zf
This is a linear system of equations with 2 unknowns and 3 equations. In general, such equation does not have a solution, unless the equations are not linearly independent, i.e., one of the equations is a linear combination of the other two.
- 1 Answer
- 236 views
- Pro Bono
Related Questions
- Linearly independent vector subsets.
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Linear Algebra Help : Consider Two Planes, P1 and P2
- Singular Value Decomposition Example
- Find the values of x
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
- Character of 2-dimensional irreducible representation of $S_4$
- [Linear Algebra] Proof check. Nilpotent$\Rightarrow Spec\Rightarrow$ Characteristic Polynomial $\Rightarrow$ Nilpotent
Your question does not make sense to me. What do you mean by "After I put it through a matrix"? In general, in order to solve linear equations the number of variables and equations should be equal.
To reduce the first set of equations I put it into a 3x6 matrix. I'm aware that leaves d and e as free variables, I'm wondering if there is a way to solve for them.