[ eigenvalues and eigenvectors] Prove that (v1, v2, v3) is a basis of R^3
Given a 3 x 3 matrix A with 3 distinct eigenvalues λ1, λ2, λ3, with its respective eigenvectors v1, v2, v2. Prove that (v1, v2, v3) is a basis of R^3
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1287 views
- $4.00
Related Questions
- Linear algebra
- Frontal solver by Bruce Irons? Am I using the right Algorithm here?
- The Span and Uniqueness of Solutions in a Parametric Matrix
- Allocation of Price and Volume changes to a change in Rate
- Calculate the inverse of a triangular matrix
- Questions about using matrices for finding best straight line by linear regression
- two short Linear Algebra questions
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible