[ eigenvalues and eigenvectors] Prove that (v1, v2, v3) is a basis of R^3
Given a 3 x 3 matrix A with 3 distinct eigenvalues λ1, λ2, λ3, with its respective eigenvectors v1, v2, v2. Prove that (v1, v2, v3) is a basis of R^3
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 706 views
- $4.00
Related Questions
- Linear algebra| finding a base
- Sum of column spaces
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- Consider the plane in R^4 , calculate an orthonormal basis
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Determine and compute the elementary matrices: Linear Algebra
- Closest Points on Two Lines: How to use algebra on equations to isolate unknowns?