[ eigenvalues and eigenvectors] Prove that (v1, v2, v3) is a basis of R^3
Given a 3 x 3 matrix A with 3 distinct eigenvalues λ1, λ2, λ3, with its respective eigenvectors v1, v2, v2. Prove that (v1, v2, v3) is a basis of R^3
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 715 views
- $4.00
Related Questions
- Questions about using matrices for finding best straight line by linear regression
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- [Linear Algebra] $T$-invariant subspace
- Linear Algebra Exam
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
- Hello! I Would like a proof detailed of the following question.
- Algebraic and Graphical Modelling Question
- Diagonal and Similar Matrices