Probe the following sequences is null
Use the definition of a null sequence to prove that the following sequence $A_n$ is null:
\[A_n=(-1)^{n+1}/(8n^3 - 3) , n=1, 2 \dots. \]
61
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 811 views
- $4.00
Related Questions
- Calculate the imit of $\sum_{k=0}^{∞} (-1)^k\frac{1}{k!} $
- Custom Solutions to Stewart Calculus Problems, 9th Edition
- Show that ${(x,\sin(1/x)) : x∈(0,1]} ∪ {(0,y) : y ∈ [-1,1]}$ is closed in $\mathbb{R^2}$ using sequences
- Is $\sum_{n=1}^{\infty}\frac{\arctan (n!)}{n^2}$ convergent or divergent?
- Sequences undergrad
- Taylor series/ Mclaurin Series
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Calculus: INFINITE SERIES