A question about the mathematical constant e.
I understand that when we write e = lim n→∞ (1+1/n)^n, we are identifying the number that this expression converges to as n becomes very large. However, I also know that lim n→∞(1/n)= lim n→∞(100/n )=0. Given this, why doesn't the same logic apply to e, such that lim n→∞ (1+1/n)^n = lim n→∞ (1+100/n)^n = e?
I've seen the proof that shows:
Starting from the definition of e:
e = lim n→∞ (1+1/n)n
Exponentiating both sides by k:
e^k = (lim n→∞ (1+1/n)^n)^k
Using properties of limits and exponents:
e^k = lim n→∞ ((1+1/n)^n)^k
Simplifying the expression inside the limit:
((1+1/n)^n)^k = (1+1/n)^nk
Substituting m=nk:
n=m/k
(1+1/n)^n=(1+k/m)^m
Applying this to k=100:
e^100 = lim n→∞ (1+100/n)^n
But I want a more intuitive understanding of why lim n→∞ (1+1/n)^n = e while lim n→∞ (1+100/n)^n = e^100, even though 1/n and 100/n both approach zero as n tends to infinity.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
When you say "In fact 100/n is 100 times larger than 1/n, although both are very small numbers" Does that mean realistically 100/n and 1/n are different numbers, but the difference between them is infinitesimal allowing the difference to be ignored.
-
Yes, the difference is very small and can be ignored (before raising to the power of n of course).
-
-
Thanks so much for the explanation it has really helped me out.
-
You're welcome, happy it was helpful.
-
- answered
- 630 views
- $10.00
Related Questions
- Exercise on Ito's rule for two correlated stocks.
- Compute $\oint_C y^2dx+3xydy $ where where $C$ is the counter clickwise oriented boundary of upper-half unit disk
- Method of cylindrical shells
- Calculus 3 Challeng problems
- FInd the derivative of $f(x)=\sqrt{x+\arctan x}$
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.
- Matrix Calculus (Matrix-vector derivatives)
- You have 100 feet of cardboard. You need to make a box with a square bottom, 4 sides, but no top.