A question about the mathematical constant e.
I understand that when we write e = lim n→∞ (1+1/n)^n, we are identifying the number that this expression converges to as n becomes very large. However, I also know that lim n→∞(1/n)= lim n→∞(100/n )=0. Given this, why doesn't the same logic apply to e, such that lim n→∞ (1+1/n)^n = lim n→∞ (1+100/n)^n = e?
I've seen the proof that shows:
Starting from the definition of e:
e = lim n→∞ (1+1/n)n
Exponentiating both sides by k:
e^k = (lim n→∞ (1+1/n)^n)^k
Using properties of limits and exponents:
e^k = lim n→∞ ((1+1/n)^n)^k
Simplifying the expression inside the limit:
((1+1/n)^n)^k = (1+1/n)^nk
Substituting m=nk:
n=m/k
(1+1/n)^n=(1+k/m)^m
Applying this to k=100:
e^100 = lim n→∞ (1+100/n)^n
But I want a more intuitive understanding of why lim n→∞ (1+1/n)^n = e while lim n→∞ (1+100/n)^n = e^100, even though 1/n and 100/n both approach zero as n tends to infinity.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
When you say "In fact 100/n is 100 times larger than 1/n, although both are very small numbers" Does that mean realistically 100/n and 1/n are different numbers, but the difference between them is infinitesimal allowing the difference to be ignored.
-
Yes, the difference is very small and can be ignored (before raising to the power of n of course).
-
-
Thanks so much for the explanation it has really helped me out.
-
You're welcome, happy it was helpful.
-
- answered
- 1367 views
- $10.00
Related Questions
- Easy money (basic calc)
- Prove that $tan x +cot x=sec x csc x$
- Is $\int_1^{\infty}\frac{x+\sqrt{x}+\sin x}{x^2-x+1}dx$ convergent?
- Show that the line integral $ \oint_C y z d x + x z d y + x y d z$ is zero along any closed contour C .
- Find the values of a, for which the system is consistent. Give a geometric interpretation of the solution(s).
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.
- Calculus Help
- Differentiate $f(x)=\int_{\tan x}^{0} \frac{\cos t}{1+e^t}dt$