Applying a 3x3 matrix to a set of 4 coordinates
Hi, I'm struggling with this question on a practice exam.
I have to apply the product of two 3x3 matrices, to a set of 4 coordinates for a square and explain the transformation. Putting the coordinates into a matrix gives me a 2x4 matrix. From my understanding, a 3x3 matrix cannot be applied to a 2x4 matrix, so I'm stuck on how to proceed.
1 Answer
I am guessing that you are applying a linear transformation to map the 4 corners of a square. The linear transformation is a $3 \times 3$ matrix, say $A$. Coordinates of the square, $P_1, P_2, P_3, P_4$ are points in $\mathbb{R}^3$. In order to find the transformation of the square, you need to find transformation of the corners. Indeed you need to compute
\[PAP_i, i=1,2,3,4\]
which are the transformations of the corners of the square under the map $A$. Note that the above matrix multiplication makes sense, and we are applying a $3 \times 3$ matrix, by a vector in $\mathbb{R}^3$.

- 1 Answer
- 114 views
- Pro Bono
Related Questions
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Linear Algebra - matrices and vectors
- Diagonalization of linear transformations
- Consider the plane in R^4 , calculate an orthonormal basis
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Linear Algebra - Matrices and Inverses Matrices