# How do I find DB in this triangle?

## 1 Answer

\[\frac{CD}{\sin 30}=\frac{AD}{\sin 45} \Rightarrow CD=AD \frac{\sin 30}{\sin 45}=2\frac{\sin 30}{\sin 45}\]

Using law of sines in the triangle BDC:

\[\frac{CD}{\sin 45}=\frac{BD}{\sin 60} \Rightarrow CD=BD \frac{\sin 45}{\sin 60}.\]

Hence

\[CD=2\frac{\sin 30}{\sin 45}=BD \frac{\sin 45}{\sin 60}\]

\[\Rightarrow BD=2\frac{\sin 30 \sin 60}{(\sin45)^2}=2\frac{\frac{1}{2}\frac{\sqrt{3}}{2}}{(\frac{\sqrt{2}}{2})^2}=\sqrt{3}.\]

Erdos

4.7K

Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.

- 1 Answer
- 217 views
- Pro Bono

### Related Questions

- Land area calculation/verification
- Calculate the angle of an isosceles triangle to cover a distance on a plane
- Find $\int \sec^2 x \tan x dx$
- Similar shapes
- Help formulating sine function
- Volume of a sphere.
- Help doing a few trig proofs
- Prove the trig identity $\sec x- \sin x \tan x =\frac{1}{\sec x}$