$f(x)=3x^2 + g(x^2) $ and x=2 is a critical point
1 Answer
It is not clear what this question is asking, but I guess you want to compute $g'(4)$ given that $x=2$ is a critical point.
Let
\[f(x)=3x^2+g(x^2).\]
Then using chain rule
\[f'(x)=6x+2x g'(x^2).\]
Substituting $x=2$ we get
\[0=f'(2)=6\cdot (2)+2\cdot 2g'(4)\]
\[\Rightarrow 12+4g'(4)=0 \Rightarrow g'(4)=-3\]
4.8K
-
Let me know if you need any clarifications.
-
got it man, ty, youre a savior
-
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 544 views
- Pro Bono
Related Questions
- Help with Norms
- Integration and Accumulation of Change
- Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- Matrix Calculus (Matrix-vector derivatives)
- I need help with the attched problem about definite integrals
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Optimization problem
- Two short calculus questions - domain and limits