How to determine the stability of an ODE
I have been struggling with this for over 2 hours and nothing seems to work, some points that hinder me are - if y* is a critical point, and thus the derivative is 0, then the derivative of the derivative is also automatically 0, so how can it me smaller then 0 according to statement a? - how can i prove stability if i dont know the function? this surely has to be different for every function and the method I know is for known functions only. It would be a great help if someone could provide some answers, thanks
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 231 views
- $2.00
Related Questions
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
- Equipartition of energy in the wave equation
- Burgers’ equation $u_t + u u_x = −x $
- Differential Equations
- Find solutions to the Riemann Problems
- Finding all real solutions of a linear ODE.
- Dynamic Systems of Differential Equations
- Beginner Differential Equations - Growth Rate Question
Low bounty!
hey im sorry i dont really know how this works, i am a student and someone reddit advised to post my question here.
The offered bounty should be high enough to give users incentive to spend time on answering your question. I believe $10 may be a fair bounty for this question.