Help in getting inverse of the function
I tried solving it algebraically and flow chart, I am getting different answers. And also I can't able to verify if it is a function with 1-to-1 relationship. I used a method I learned from Youtube and found it is an one-to-one, but I am confuse how to take reverse of it.
Someone please help!
1 Answer
We start by saying
$$y = \frac{2x+1}{x+2}$$ And then, we try to solve for $x$ from the previous equation:
$$y(x+2) = 2x+1$$ $$x(y-2) = 1-2y$$ $$ x = \frac{1-2y}{y-2}$$.
To know if a function is 1-1, you can compute it's derivatives and check that it is always or always negative: $$y' =\frac{2(x+2)-(2x+1)}{(x+2)^2} = \frac{3}{(x+2)^2} >$$
Mathe
3.5K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 265 views
- Pro Bono
Related Questions
- Graph theory question on Euler circuit, Euler path, Hamilton circuit, and Hamilton path
- Logic Question (𝐴→(𝐵→𝐶))→((𝐴→𝐵)→(𝐴→𝐶))
- Set Theory Question Help
- How many balanced lists of n left and n right parentheses are there?
- Logic quesiton A v ¬A
- Discrete Test
- Recursive Set
- Discrete Math/ Set theory Question