$\lim_{\rightarrow \infty} \sin(x²)$
1 Answer
The following limit
\[\lim_{x\rightarrow \infty}\sin x^2\]
does not exists as $\sin (x^2)$ oscillates between $-1$ and $1$ as $x \rightarrow \infty.$ However,
\[0=\lim_{x\rightarrow \infty}-\frac{1}{x} \leq \lim_{x\rightarrow \infty}\frac{\sin x^2}{x} \leq \lim_{x\rightarrow \infty}\frac{1}{x}=0.\]
Hence
\[\lim_{x\rightarrow \infty}\frac{\sin x^2}{x}=0.\]
574
-
thanks a lot
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 407 views
- Pro Bono
Related Questions
- Convergence of $\sum\limits_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}$
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Matrix Calculus (Matrix-vector derivatives)
- Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- Question for KAV1
- Is $\int_0^1 \frac{\cos x}{x \sin^2 x}dx$ divergent or convergent?
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$