$\lim_{\rightarrow \infty} \sin(x²)$
1 Answer
The following limit
\[\lim_{x\rightarrow \infty}\sin x^2\]
does not exists as $\sin (x^2)$ oscillates between $-1$ and $1$ as $x \rightarrow \infty.$ However,
\[0=\lim_{x\rightarrow \infty}-\frac{1}{x} \leq \lim_{x\rightarrow \infty}\frac{\sin x^2}{x} \leq \lim_{x\rightarrow \infty}\frac{1}{x}=0.\]
Hence
\[\lim_{x\rightarrow \infty}\frac{\sin x^2}{x}=0.\]
574
-
thanks a lot
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 375 views
- Pro Bono
Related Questions
- Find a general solution for $\int at^ne^{bt}dt$, where $n$ is any integer, and $a$ and $b$ are real constants.
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Relating integrals to the area under the curve using rectangles.
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- Integration
- Need Upper Bound of an Integral
- Fermat's method of calculus
- Volume of solid of revolution