$\lim_{\rightarrow \infty} \sin(x²)$
1 Answer
The following limit
\[\lim_{x\rightarrow \infty}\sin x^2\]
does not exists as $\sin (x^2)$ oscillates between $-1$ and $1$ as $x \rightarrow \infty.$ However,
\[0=\lim_{x\rightarrow \infty}-\frac{1}{x} \leq \lim_{x\rightarrow \infty}\frac{\sin x^2}{x} \leq \lim_{x\rightarrow \infty}\frac{1}{x}=0.\]
Hence
\[\lim_{x\rightarrow \infty}\frac{\sin x^2}{x}=0.\]
574
-
thanks a lot
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 374 views
- Pro Bono
Related Questions
- Can we use the delta-ep def of a limit to find a limiting value?
- Two calculus questions
- 3 Multi-step response questions
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$
- Easy money (basic calc)
- Find all values of x... (Infinite Sums)
- Business Calculus. Finding the deriviative.
- Evaluate$\int \sqrt{\tan x}dx$