$\lim_{\rightarrow \infty} \sin(x²)$
1 Answer
The following limit
\[\lim_{x\rightarrow \infty}\sin x^2\]
does not exists as $\sin (x^2)$ oscillates between $-1$ and $1$ as $x \rightarrow \infty.$ However,
\[0=\lim_{x\rightarrow \infty}-\frac{1}{x} \leq \lim_{x\rightarrow \infty}\frac{\sin x^2}{x} \leq \lim_{x\rightarrow \infty}\frac{1}{x}=0.\]
Hence
\[\lim_{x\rightarrow \infty}\frac{\sin x^2}{x}=0.\]

574
-
thanks a lot
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 254 views
- Pro Bono
Related Questions
- In what direction the function $f(x,y)=e^{x-y}+\sin (x+y^2)$ grows fastest at point $(0,0)$?
- Find limit
- Integration
- Calculus 3 Challeng problems
- Improper integral convergence
- Optimisation Problem
- Relating integrals to the area under the curve using rectangles.
- Profit maximizing with cost and price functions