$\lim_{\rightarrow \infty} \sin(x²)$
1 Answer
The following limit
\[\lim_{x\rightarrow \infty}\sin x^2\]
does not exists as $\sin (x^2)$ oscillates between $-1$ and $1$ as $x \rightarrow \infty.$ However,
\[0=\lim_{x\rightarrow \infty}-\frac{1}{x} \leq \lim_{x\rightarrow \infty}\frac{\sin x^2}{x} \leq \lim_{x\rightarrow \infty}\frac{1}{x}=0.\]
Hence
\[\lim_{x\rightarrow \infty}\frac{\sin x^2}{x}=0.\]

574
-
thanks a lot
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 344 views
- Pro Bono
Related Questions
- Are my answers correct?
- Find $lim_{x \rightarrow 0^+} x^{\ln x}$
- Compute $\oint_C y^2dx+3xydy $ where where $C$ is the counter clickwise oriented boundary of upper-half unit disk
- Optimization Quick Problem
- Does $\lim_{n \rightarrow \infty} \frac{2^{n^2}}{n!}$ exist?
- Let $z = f(x − y)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- Velocity of a rock