Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
Answer
By Green's Theorem we have \[\int_C(2x^3-y^3)dx+(x^3+y^3)dy=\iint_{D} \frac{\partial (x^3+y^3)}{\partial x}-\frac{\partial (2x^3-y^3)}{\partial y}dxdy\] \[ =\iint_{D} 3x^2+3y^2 dx dy=\int_{0}^{2 \pi} \int_0^{1}3r^2 r dr d\theta=2\pi \int_0^{1}3r^3 \] \[=2\pi(\frac{3}{4})=\frac{3\pi}{2}.\]
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 5132 views
- $4.00
Related Questions
- Under the hood of Hard Margin SVM
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Integrate $\int e^{\sqrt{x}}dx$
- A complex Analysis problem
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Two calculus questions
- Partial Derivatives and Graphing Functions
- Integrate $\int x^2\sin^{-1}\left ( \frac{\sqrt{a^2-x^2} }{b} \right ) dx$