Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
Answer
By Green's Theorem we have \[\int_C(2x^3-y^3)dx+(x^3+y^3)dy=\iint_{D} \frac{\partial (x^3+y^3)}{\partial x}-\frac{\partial (2x^3-y^3)}{\partial y}dxdy\] \[ =\iint_{D} 3x^2+3y^2 dx dy=\int_{0}^{2 \pi} \int_0^{1}3r^2 r dr d\theta=2\pi \int_0^{1}3r^3 \] \[=2\pi(\frac{3}{4})=\frac{3\pi}{2}.\]

4.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 1467 views
- $4.00
Related Questions
- Evaluate $\int_0^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx$
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- Calculus - Derivatives (help with finding a geocache)
- Find $\lim \limits_{x \rightarrow \infty} \frac{x e^{-x}+1}{1+e^{-x}}$
- Calculus on Submanifolds Challenge
- Rose curve
- Calculus 1
- Compute $\iint_D \frac{dx dy}{\sqrt{1+x+2y}}$ on $D=[0,1]\times [0,1]$