Scilab code to estimate Asian call option using the control variates method
Hello everyone,
I need to estimate Asian call option based on the arithmetic mean by using the control variates method. Since we have the exacte value of the option with geometric mean (Black-Scholes formula), i choosed the geometric mean as a control variates for the arithmetic mean.
The problem is that i'm getting the same values (graph) for the confidence interval limits and the estimate values.
Please help me to fix it.
Thanks in advance.
clear;
clc;
K = 120;
S0 = 100;
r = 0.04;
sigma = 0.4;
sigma2 = sigma^2;
T = 1;
n = 52;
dt = T/n;
t = 0:dt:T;
Nmax = 100;
z = 1.96;
sigman=(sigma/n)*sqrt(((n+1)*(2*n+1))/6);
sigman2=sigman^2;
rn=(r-0.5*sigma2)*(0.5*(n+1)/n)+0.5*sigman2;
d1 = (log(S0/K)+(rn+0.5*sigman2)*T)/(sigman*sqrt(T));
d2 = d1-sigman*sqrt(T);
ECg = exp(-r*T)*(S0*exp(rn*T)*cdfnor("PQ",d1,0,1)-K*cdfnor("PQ",d2,0,1));
function S=f(x)
S = ones(1,n);
for i = 1:n
u = exp((r-0.5*sigma2)*t(i+1)+sigma*x*sqrt(t(i+1)));
S(i)= u;
end
endfunction
function [CI_low, CI_up, CV]=integralCV(N)
S1 = 0;
S2 = 0;
for i = 1:N
u = grand(Nmax,1,"nor",0,1);
St = S0 * f(u(1));
ht1 = max(mean(St)-K,0);
ht2 = max((prod(St))^(1/n)-K,0);
ht = ht1-ht2;
S1 = S1 + exp(-r*T)*ht;
S2 = S2 + (exp(-r*T)*ht)^2;
end
CV = S1 / N + ECg;
stdev = sqrt((1 / (N-1))*( S2 - N*CV^2 ));
CI_low = CV - z * stdev / sqrt(N) ;
CI_up = CV + z * stdev / sqrt(N) ;
endfunction
D = 10:1:Nmax-9;
for i=1:length(D)
[CI_lowerCV(i), CI_upperCV(i), CV(i)] = integralCV(D(i));
clf();
plot2d(log10(D)', [ CI_lowerCV CI_upperCV CV], [ 3 5 2 ]);
legend([ "Lower Bound (CV)" "Upper Bound (CV)" "CV"]);
title("Estimation of E[Ca] by the control variates method");
- unanswered
- 241 views
- Pro Bono
Related Questions
- Prove that the following sequences monotnically decrease and increase correspondingly. Since they are bounded, find the limit.
- A gamma function problem
- Weighted average issue
- Bernoulli problem
- foundations in probability
- Probability and Statistics Question
- Differently loaded dices in repeated runs
- Equation Required/Formula
This is a very advanced problem...