Scilab code to estimate Asian call option using the control variates method
Hello everyone,
I need to estimate Asian call option based on the arithmetic mean by using the control variates method. Since we have the exacte value of the option with geometric mean (Black-Scholes formula), i choosed the geometric mean as a control variates for the arithmetic mean.
The problem is that i'm getting the same values (graph) for the confidence interval limits and the estimate values.
Please help me to fix it.
Thanks in advance.
clear;
clc;
K = 120;
S0 = 100;
r = 0.04;
sigma = 0.4;
sigma2 = sigma^2;
T = 1;
n = 52;
dt = T/n;
t = 0:dt:T;
Nmax = 100;
z = 1.96;
sigman=(sigma/n)*sqrt(((n+1)*(2*n+1))/6);
sigman2=sigman^2;
rn=(r-0.5*sigma2)*(0.5*(n+1)/n)+0.5*sigman2;
d1 = (log(S0/K)+(rn+0.5*sigman2)*T)/(sigman*sqrt(T));
d2 = d1-sigman*sqrt(T);
ECg = exp(-r*T)*(S0*exp(rn*T)*cdfnor("PQ",d1,0,1)-K*cdfnor("PQ",d2,0,1));
function S=f(x)
S = ones(1,n);
for i = 1:n
u = exp((r-0.5*sigma2)*t(i+1)+sigma*x*sqrt(t(i+1)));
S(i)= u;
end
endfunction
function [CI_low, CI_up, CV]=integralCV(N)
S1 = 0;
S2 = 0;
for i = 1:N
u = grand(Nmax,1,"nor",0,1);
St = S0 * f(u(1));
ht1 = max(mean(St)-K,0);
ht2 = max((prod(St))^(1/n)-K,0);
ht = ht1-ht2;
S1 = S1 + exp(-r*T)*ht;
S2 = S2 + (exp(-r*T)*ht)^2;
end
CV = S1 / N + ECg;
stdev = sqrt((1 / (N-1))*( S2 - N*CV^2 ));
CI_low = CV - z * stdev / sqrt(N) ;
CI_up = CV + z * stdev / sqrt(N) ;
endfunction
D = 10:1:Nmax-9;
for i=1:length(D)
[CI_lowerCV(i), CI_upperCV(i), CV(i)] = integralCV(D(i));
clf();
plot2d(log10(D)', [ CI_lowerCV CI_upperCV CV], [ 3 5 2 ]);
legend([ "Lower Bound (CV)" "Upper Bound (CV)" "CV"]);
title("Estimation of E[Ca] by the control variates method");
- unanswered
- 374 views
- Pro Bono
Related Questions
- Promotional Concept (Probability)
- Bayesian statistics
- stats- data analysis
- foundations in probability
- Normal distribution & Probability
- Probability of having a disease given a series of test results
- How would I perform an exploratory data analysis to visually assess the relationship between two sets of data?
- Determine which one of the following statements is true and explain why
This is a very advanced problem...