Scilab code to estimate Asian call option using the control variates method
Hello everyone,
I need to estimate Asian call option based on the arithmetic mean by using the control variates method. Since we have the exacte value of the option with geometric mean (Black-Scholes formula), i choosed the geometric mean as a control variates for the arithmetic mean.
The problem is that i'm getting the same values (graph) for the confidence interval limits and the estimate values.
Please help me to fix it.
Thanks in advance.
clear;
clc;
K = 120;
S0 = 100;
r = 0.04;
sigma = 0.4;
sigma2 = sigma^2;
T = 1;
n = 52;
dt = T/n;
t = 0:dt:T;
Nmax = 100;
z = 1.96;
sigman=(sigma/n)*sqrt(((n+1)*(2*n+1))/6);
sigman2=sigman^2;
rn=(r-0.5*sigma2)*(0.5*(n+1)/n)+0.5*sigman2;
d1 = (log(S0/K)+(rn+0.5*sigman2)*T)/(sigman*sqrt(T));
d2 = d1-sigman*sqrt(T);
ECg = exp(-r*T)*(S0*exp(rn*T)*cdfnor("PQ",d1,0,1)-K*cdfnor("PQ",d2,0,1));
function S=f(x)
S = ones(1,n);
for i = 1:n
u = exp((r-0.5*sigma2)*t(i+1)+sigma*x*sqrt(t(i+1)));
S(i)= u;
end
endfunction
function [CI_low, CI_up, CV]=integralCV(N)
S1 = 0;
S2 = 0;
for i = 1:N
u = grand(Nmax,1,"nor",0,1);
St = S0 * f(u(1));
ht1 = max(mean(St)-K,0);
ht2 = max((prod(St))^(1/n)-K,0);
ht = ht1-ht2;
S1 = S1 + exp(-r*T)*ht;
S2 = S2 + (exp(-r*T)*ht)^2;
end
CV = S1 / N + ECg;
stdev = sqrt((1 / (N-1))*( S2 - N*CV^2 ));
CI_low = CV - z * stdev / sqrt(N) ;
CI_up = CV + z * stdev / sqrt(N) ;
endfunction
D = 10:1:Nmax-9;
for i=1:length(D)
[CI_lowerCV(i), CI_upperCV(i), CV(i)] = integralCV(D(i));
clf();
plot2d(log10(D)', [ CI_lowerCV CI_upperCV CV], [ 3 5 2 ]);
legend([ "Lower Bound (CV)" "Upper Bound (CV)" "CV"]);
title("Estimation of E[Ca] by the control variates method");
- unanswered
- 356 views
- Pro Bono
Related Questions
- A bag contains 3 red jewels and 7 black jewels. You randomly draw the jewels out one by one without replacement. What is the probability that the last red jewel was the 8th one withdrawn?
- Currently studying a grad level Statistical Inference course. I'd just like some clarification regarding how to obtain the Rao-Cramer Lower Bound for a statistic.
- How do I meaningfully display Kruskal Wallis Data when I have a lot of zeroes?
- "Estimate of standard error of the proportion"
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- A question in probability theory
- Statistics tasks
- Weighted Coin, Probability Question
This is a very advanced problem...