Scilab code to estimate Asian call option using the control variates method
Hello everyone,
I need to estimate Asian call option based on the arithmetic mean by using the control variates method. Since we have the exacte value of the option with geometric mean (Black-Scholes formula), i choosed the geometric mean as a control variates for the arithmetic mean.
The problem is that i'm getting the same values (graph) for the confidence interval limits and the estimate values.
Please help me to fix it.
Thanks in advance.
clear;
clc;
K = 120;
S0 = 100;
r = 0.04;
sigma = 0.4;
sigma2 = sigma^2;
T = 1;
n = 52;
dt = T/n;
t = 0:dt:T;
Nmax = 100;
z = 1.96;
sigman=(sigma/n)*sqrt(((n+1)*(2*n+1))/6);
sigman2=sigman^2;
rn=(r-0.5*sigma2)*(0.5*(n+1)/n)+0.5*sigman2;
d1 = (log(S0/K)+(rn+0.5*sigman2)*T)/(sigman*sqrt(T));
d2 = d1-sigman*sqrt(T);
ECg = exp(-r*T)*(S0*exp(rn*T)*cdfnor("PQ",d1,0,1)-K*cdfnor("PQ",d2,0,1));
function S=f(x)
S = ones(1,n);
for i = 1:n
u = exp((r-0.5*sigma2)*t(i+1)+sigma*x*sqrt(t(i+1)));
S(i)= u;
end
endfunction
function [CI_low, CI_up, CV]=integralCV(N)
S1 = 0;
S2 = 0;
for i = 1:N
u = grand(Nmax,1,"nor",0,1);
St = S0 * f(u(1));
ht1 = max(mean(St)-K,0);
ht2 = max((prod(St))^(1/n)-K,0);
ht = ht1-ht2;
S1 = S1 + exp(-r*T)*ht;
S2 = S2 + (exp(-r*T)*ht)^2;
end
CV = S1 / N + ECg;
stdev = sqrt((1 / (N-1))*( S2 - N*CV^2 ));
CI_low = CV - z * stdev / sqrt(N) ;
CI_up = CV + z * stdev / sqrt(N) ;
endfunction
D = 10:1:Nmax-9;
for i=1:length(D)
[CI_lowerCV(i), CI_upperCV(i), CV(i)] = integralCV(D(i));
clf();
plot2d(log10(D)', [ CI_lowerCV CI_upperCV CV], [ 3 5 2 ]);
legend([ "Lower Bound (CV)" "Upper Bound (CV)" "CV"]);
title("Estimation of E[Ca] by the control variates method");
- unanswered
- 400 views
- Pro Bono
Related Questions
- How would I perform an exploratory data analysis to visually assess the relationship between two sets of data?
- stats- data analysis
- Existence of a Non-negative Integrable Random Variable with Supremum-Constrained Survival Function
- Chi square test for association in Jamovi in inferential statistics
- Correlation of Normal Random Variables
- Hypothesis Testing, Probabilities
- Very quick question - which statistical test to use?
- Calculating P values from data.
This is a very advanced problem...