Make two simulations of this system of equations using Euler and 4th Order Runge-Kutta method (question attached)
$2\frac{d^2x_1(t)}{dt^2}+2\frac{dx_1(t)}{dt}+(1+2x_1(t))-2\frac{dx_2(t)}{dt}=0 $ Eq.(6)
$2\frac{d^2x_2(t)}{dt^2}+2\frac{dx_2(t)}{dt}-2\frac{dx_1(t)}{dt} = f(t)$ Eq.(7)
$2\frac{d^2x_2(t)}{dt^2}+2\frac{dx_2(t)}{dt}-2\frac{dx_1(t)}{dt} = f(t)$ Eq.(7)
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- closed
- 798 views
- $25.00
Related Questions
- Dependency of a solution for differential equation
- Please solve this question
- Find the General Solution
- 3 Multi-step response questions
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- What is the transfer function of this system of differential equations?
- Finding all real solutions of a linear ODE.
- ODE system help
If you also want the Python codes, this would take about 2 hours to be answered. Very low bounty.