Make two simulations of this system of equations using Euler and 4th Order Runge-Kutta method (question attached)
$2\frac{d^2x_1(t)}{dt^2}+2\frac{dx_1(t)}{dt}+(1+2x_1(t))-2\frac{dx_2(t)}{dt}=0 $ Eq.(6)
$2\frac{d^2x_2(t)}{dt^2}+2\frac{dx_2(t)}{dt}-2\frac{dx_1(t)}{dt} = f(t)$ Eq.(7)
$2\frac{d^2x_2(t)}{dt^2}+2\frac{dx_2(t)}{dt}-2\frac{dx_1(t)}{dt} = f(t)$ Eq.(7)
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- closed
- 471 views
- $25.00
Related Questions
- Ordinary Differential Equations Word Problems
- How does the traffic flow model arrive at the scaled equation?
- Find solutions to the Riemann Problems
- Solving a system of linear ODE with complex eigenvalues
- Variation of Parameter for Variable Coefficient Equation
- Find a formula for the vector hyperbolic problem
- Dependency of a solution for differential equation
- Differential Equations- Initial Value Problem
If you also want the Python codes, this would take about 2 hours to be answered. Very low bounty.