Trigonometric Function
Prove the identity $\frac{\cos 2x}{\sin^{2} x + \frac{1}{2} \sin 2x } $ = $\cot x - 1.$
1 Answer
Prove: \frac{\cos 2x}{\sin^{2} x + \frac{1}{2} \sin 2x} = \cot x - 1
sin
2
x+
2
1
sin2x
cos2x
=cotx−1
Start with LHS: \frac{\cos 2x}{\sin^{2} x + \frac{1}{2} \sin 2x}
sin
2
x+
2
1
sin2x
cos2x
Use double angle identity for cosine: \cos 2x = \cos^2 x - \sin^2 xcos2x=cos
2
x−sin
2
x.
Factor the numerator: \frac{(\cos x + \sin x)(\cos x - \sin x)}{\sin^{2} x + \frac{1}{2} \sin 2x}
sin
2
x+
2
1
sin2x
(cosx+sinx)(cosx−sinx)

16
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 379 views
- Pro Bono
Related Questions
- Help doing a few trig proofs
- Trigonometry Word Problems
- Domain question
- Somewhat simple trig question
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Function Invertibility/Inverse & Calculus, One question. Early Uni/College level
- Optimization of a multi-objective function
- How do you find a side of a scalene triangle with internal angles and area?