How To Solve A Limit Using The Squeeze Theorem
1 Answer
Note that $-1 \leq \cos (\frac{1}{x}-1)\leq 1$. Hence
\[-(x-1)^2\leq (x-1)^2\cos (\frac{1}{x}-1) \leq (x-1)^2.\]
Hence
\[0=\lim_{x\rightarrow 0}-(x-1)^2\leq \lim_{x\rightarrow 0} (x-1)^2\cos (\frac{1}{x}-1) \leq \lim_{x\rightarrow 0} (x-1)^2=0.\]
By the Squeeze Theorem
\[\lim_{x\rightarrow 0} (x-1)^2\cos (\frac{1}{x}-1)=0.\]
Erdos
4.7K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 261 views
- Pro Bono
Related Questions
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Taylor Polynom/Lagrange form om the remainder term.
- Calculus 3
- Calculus 1
- Find $\lim \limits_{x \rightarrow \infty} \frac{x e^{-x}+1}{1+e^{-x}}$
- Equations of Motion and Partial Fractions
- True-False real analysis questions
- Find the values of a, for which the system is consistent. Give a geometric interpretation of the solution(s).