How To Solve A Limit Using The Squeeze Theorem
1 Answer
Note that $-1 \leq \cos (\frac{1}{x}-1)\leq 1$. Hence
\[-(x-1)^2\leq (x-1)^2\cos (\frac{1}{x}-1) \leq (x-1)^2.\]
Hence
\[0=\lim_{x\rightarrow 0}-(x-1)^2\leq \lim_{x\rightarrow 0} (x-1)^2\cos (\frac{1}{x}-1) \leq \lim_{x\rightarrow 0} (x-1)^2=0.\]
By the Squeeze Theorem
\[\lim_{x\rightarrow 0} (x-1)^2\cos (\frac{1}{x}-1)=0.\]

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 362 views
- Pro Bono
Related Questions
- Spot my mistake and fix it so that it matches with the correct answer. The problem is calculus based.
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Evaluate $\int \frac{dx}{x \sqrt{1+\ln x}}$
- Find all values of x... (Infinite Sums)
- Beginner Question on Integral Calculus
- Rose curve
- Calculus / imaginary numbers and S^2