Probability question dealing with expected value shown below
a random variable X has a distribution ae^(-ax), Let [x] denote the greatest integer function applied to the real number 𝑥, that is, the largest integer among those not exceeding 𝑥.
What is the correct expression for the expected value of 𝑁 =[x]? the answer should involve a
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
how did you get (e^(a) -1)e^(-a(w+1)) actually?
-
It's the derivative of 1−e ^(−a(w+1)). Chain rule.
-
if you simplify 1-e^(-aw-a) to 1-(e^-aw)(e^-a) then the derivative with respect to w is (ae^(-aw))(e^-a) right? says the same thing on symbolab https://www.symbolab.com/solver/step-by-step/%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%5Cleft(1-e%5E%7B-ax-a%7D%5Cright)?or=input
-
You’re right. I realized you can just find the PMF directly with an integral. I’ve edited my answer.
-
okay, thanks
- answered
- 709 views
- $10.00
Related Questions
- How safe is this driver?
- foundations in probability
- Probability that a pump will fail during its design life
- Find the maximum likelihood estimate
- Trajectory detection in noise - the probability of at least one random point being within epsilon distance of the trajectory?
- Car accidents and the Poisson distribution
- Statistics and Probability
- Check if problems are correct
…should involve a what?
the constant a in the equation ae^(-ax)