Probability question dealing with expected value shown below
a random variable X has a distribution ae^(-ax), Let [x] denote the greatest integer function applied to the real number 𝑥, that is, the largest integer among those not exceeding 𝑥.
What is the correct expression for the expected value of 𝑁 =[x]? the answer should involve a
Answer
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.

-
how did you get (e^(a) -1)e^(-a(w+1)) actually?
-
It's the derivative of 1−e ^(−a(w+1)). Chain rule.
-
if you simplify 1-e^(-aw-a) to 1-(e^-aw)(e^-a) then the derivative with respect to w is (ae^(-aw))(e^-a) right? says the same thing on symbolab https://www.symbolab.com/solver/step-by-step/%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%5Cleft(1-e%5E%7B-ax-a%7D%5Cright)?or=input
-
You’re right. I realized you can just find the PMF directly with an integral. I’ve edited my answer.
-
okay, thanks
- answered
- 446 views
- $10.00
Related Questions
- Bayesian statistics
- Probability question
- Probability and Statistics Question
- Probability - Expectation calculation for a function.
- X is number of (fair) coin flips needed to land m heads OR m tails. m is arbitrary natural number. Delfine CDF of X. (in It's simplest form)
- Probability - what is the probability that a given tire length will lie in a lenght of interest
- foundations in probability
- Suppose that X is a random variable uniform in (0, 1), and define $M = 2 \max\{X, 1− X\} − 1$. Determine the distribution function of M.
…should involve a what?
the constant a in the equation ae^(-ax)