Probability question dealing with expected value shown below
a random variable X has a distribution ae^(-ax), Let [x] denote the greatest integer function applied to the real number 𝑥, that is, the largest integer among those not exceeding 𝑥.
What is the correct expression for the expected value of 𝑁 =[x]? the answer should involve a
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
how did you get (e^(a) -1)e^(-a(w+1)) actually?
-
It's the derivative of 1−e ^(−a(w+1)). Chain rule.
-
if you simplify 1-e^(-aw-a) to 1-(e^-aw)(e^-a) then the derivative with respect to w is (ae^(-aw))(e^-a) right? says the same thing on symbolab https://www.symbolab.com/solver/step-by-step/%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%5Cleft(1-e%5E%7B-ax-a%7D%5Cright)?or=input
-
You’re right. I realized you can just find the PMF directly with an integral. I’ve edited my answer.
-
okay, thanks
- answered
- 790 views
- $10.00
Related Questions
- Pdf/cdf Probability
- Compound Interest with monthly added capital
- Existence of a Non-negative Integrable Random Variable with Supremum-Constrained Survival Function
- Using probability to calculate expected time a task would take with "bad" luck
- Compute the cumulative density function of X
- foundations in probability
- What are the odds of at least k same outcomes in n independent trials, each with x equally likely outcomes?
- Probability/Outcome
…should involve a what?
the constant a in the equation ae^(-ax)