Measure Theory (A counterexample to interchanging limits and integration)
Consider the probability space $(\mathbb{R}, \mathcal{B}, \mathrm{P})$ with $\mathrm{P}$ being the Cauchy distribution.
(a) Let $f_n(x)=|x| \mathbb{1}_{[-n, n]}$. Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_n d \mathrm{P}=\int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} f_n\right) d \mathrm{P}$. What is the value of this expression?
(b) Let $f_n(x)=x \mathbb{1}_{[-n, n]}$. Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_n d \mathrm{P} \neq \int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} f_n\right) d \mathrm{P}$. Argue that this does not contradict the Monotone Convergence Theorem.
Rosetta
59
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Ering
93
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 279 views
- $40.00
Related Questions
- Convergence of integrals
- Subsets and Sigma Algebras: Proving the Equality of Generated Sigma Algebras
- Convergence integrals
- Existence of a Non-negative Integrable Random Variable with Supremum-Constrained Survival Function
- Integral of product measure
- Measure Theory and the Hahn Decomposition Theorem
- Prove that $\frac{d \lambda}{d \mu} = \frac{d \lambda}{d \nu} \frac{d \nu}{d \mu}$ for $\sigma$-finite measures $\mu,\nu, \lambda$.
- Characterizing S-Measurable Functions on $\mathbb{R}$ with Respect to a Simple $\sigma$-Algebra