Consider the matrix, calculate a basis of the null space and column space
Consider the matrix A
-) Calculate a basis β1 of the null space ker(A) ⊆ R 4 and the Ker(A)
-) Calculate a basis β2 of the column space C(A) ⊆ R 3 yand the range rg(A)
22
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1274 views
- $4.70
Related Questions
- Show that eigenvectors of a symmetric matrix are orthogonal
- Advice for proving existence claims
- Question on Subspaces
- [Linear Algebra] Proof check. Nilpotent$\Rightarrow Spec\Rightarrow$ Characteristic Polynomial $\Rightarrow$ Nilpotent
- Linear independence of functions
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- [Linear Algebra] $T$-invariant subspace
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible