Integral by parts help
Hey Gn, I'm trying to do this exercise but I can't understand what I have to do, I suppose it is Sin^3x^2 the derived and x the integral but I don't understand how the derivative should be in this case.
$\int x\sin^3x^2 dx$
its gonna be a big help if you guys help me, thanks for you time.
1 Answer
I would attempt this integral using substitution rather than IBP. The clue is that the sine has an inner function, namely the $x^2$.
First, let $u=x^2\implies du=2xdx$. Then
$\int x\sin^3(x^2)dx = \frac{1}{2}\int \sin^3(u)du = \frac{1}{2}\int \sin(u)\sin^2(u)du$
$= \frac{1}{2}\int \sin(u)\sin^2(u)du = \frac{1}{2}\int \sin(u)(1-\cos^2(u))du\;[*] = \frac{1}{2}\int \sin(u)-\sin(u)\cos^2(u)du$
$= -\frac{1}{2}\cos(u)+\frac{1}{6}\cos^3(u) = \frac{1}{6}\cos^3(x^2)-\frac{1}{2}\cos(x^2)+c$.
$[*]\;$ Using the identity $\sin^2(x)+\cos^2(x)\equiv1$
I hope this has helped you!
-
Yes, thank you very much, my teacher told me that it is done by IBP but there is no practical solution, tomorrow I will talk to him if it is possible to do it that way. Again thank you very much.
- 1 Answer
- 492 views
- Pro Bono
Related Questions
- Studying the graph of this function
- Find the composition function $fog(x)$
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Two short calculus questions - domain and limits
- Create a rational function, g(x) that has the following properties.
- How to parameterize an equation with 3 variables
- Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications