X is number of (fair) coin flips needed to land m heads OR m tails. m is arbitrary natural number. Delfine CDF of X. (in It's simplest form)

What I already know:

  • $P(x=k) = {{k-1} \choose{m-1}}*(1/2)^{k-1}$

    I suspect one way to get CDF is to Sum P(x=k) from k=m to x, and Mathematica evaluates that sum as:$ 2-2^{x}{{x} \choose{m-1}}*hypergeometric(1,x+1;x-m+2;1/2) $
    But I would like to know how to get to that without computer. Or is there another way to get to CDF of X? 


Answers can only be viewed under the following conditions:
  1. The questioner was satisfied with and accepted the answer, or
  2. The answer was evaluated as being 100% correct by the judge.
View the answer
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.