Integral equality
https://imgur.com/u0rL1EV
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]

1
1 Answer
The answer is true. We have
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx\]
\[=0+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Hence
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Note that
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=0\]
since the fuction $\frac{\sin ^3 (\pi x)}{1+x^{10}}$ is odd.

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 438 views
- Pro Bono
Related Questions
- Calculating the derivatative
- Calculus 1
- [Help Application of Integration]Question
- Application of integrals
- Is $\sum_{i=1}^{\infty}\arctan (\frac{n+1}{n^2+5})$ convergent or divergent?
-
Limit graphs
- Integrate $\int x^2\sin^{-1}\left ( \frac{\sqrt{a^2-x^2} }{b} \right ) dx$
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
It is better to type body for Pro Bono questions and do not use links or images
I edited the question.