Integral equality
https://imgur.com/u0rL1EV
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]
1
1 Answer
The answer is true. We have
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx\]
\[=0+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Hence
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Note that
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=0\]
since the fuction $\frac{\sin ^3 (\pi x)}{1+x^{10}}$ is odd.
4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 490 views
- Pro Bono
Related Questions
- Application of Integrals
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Integrate $\int x^2\sin^{-1}\left ( \frac{\sqrt{a^2-x^2} }{b} \right ) dx$
- Find equation of the tangent line using implicit differentiation
- Find limit
- Profit maximizing with cost and price functions
- Calculus - Differentiation
- Generalization of the Banach fixed point theorem
It is better to type body for Pro Bono questions and do not use links or images
I edited the question.