Integral equality
https://imgur.com/u0rL1EV
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]
Is it true that
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx?\]

1
1 Answer
The answer is true. We have
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx\]
\[=0+\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Hence
\[\int_{-\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=\int_{\frac{\pi}{2}}^{\pi}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx.\]
Note that
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{\sin ^3 (\pi x)}{1+x^{10}}dx=0\]
since the fuction $\frac{\sin ^3 (\pi x)}{1+x^{10}}$ is odd.

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 337 views
- Pro Bono
Related Questions
- Find $\lim _{x \rightarrow 0} x^{x}$
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Question 1 calculus
- Calc 3 Question
-
Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid - Evaluate $\int \ln(\sqrt{x+1}+\sqrt{x}) dx$
- Find $\int \sec^2 x \tan x dx$
- Applications of Integration [Calculus 1 and 2]
It is better to type body for Pro Bono questions and do not use links or images
I edited the question.