When is Galois extension over intersection of subfields finite

Suppose that $K$ and $K^{'}$ are subfields of $L$ such that $ L/K$ (resp. $L/K^{'}$) is a Galois extension with Galois group $G$ (resp. $G^{'}$). Show that $L/(K \cap K^{'})$ is a Galois extension if and only if the group $H$, generated by $G$ and$ G^{'}$, is finite. Show furthermore that if this is so, then $H = Gal(L/(K \cap K^{'}))$.

  • Mathe Mathe
    0

    I would suggest increasing the bounty.

  • Erdos Erdos
    0

    Yes, the bounty is too low for the level of the question.

  • Jbuck Jbuck
    0

    @Philip Hey there, I hope you're alright! I was wondering if you could help me with some questions this Friday, 10a.m. GMT +1. I will have around a 2-2.5 hour window and I'm willing to pay $60 per question if you're online and able to answer within the time limit, would you be interested? The questions are related to representation theory.

Answer

Answers can only be viewed under the following conditions:
  1. The questioner was satisfied with and accepted the answer, or
  2. The answer was evaluated as being 100% correct by the judge.
View the answer

1 Attachment

Mathe Mathe
3.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.