When is Galois extension over intersection of subfields finite
Suppose that $K$ and $K^{'}$ are subfields of $L$ such that $ L/K$ (resp. $L/K^{'}$) is a Galois extension with Galois group $G$ (resp. $G^{'}$). Show that $L/(K \cap K^{'})$ is a Galois extension if and only if the group $H$, generated by $G$ and$ G^{'}$, is finite. Show furthermore that if this is so, then $H = Gal(L/(K \cap K^{'}))$.
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1516 views
- $20.00
Related Questions
- Graph the pair of equations in the same rectangular coordinate system: Y=-2x ; y=-2
- Solving for two unknown angles, from two equations.
- Find rational numbers A & B given the attached formula
- $Tor$ over finite rings
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Closest Points on Two Lines: How to use algebra on equations to isolate unknowns?
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Need to figure distance between two points/lines.
I would suggest increasing the bounty.
Yes, the bounty is too low for the level of the question.
@Philip Hey there, I hope you're alright! I was wondering if you could help me with some questions this Friday, 10a.m. GMT +1. I will have around a 2-2.5 hour window and I'm willing to pay $60 per question if you're online and able to answer within the time limit, would you be interested? The questions are related to representation theory.