Discrete Math
1) Let $T$ be a tree with 47 vertices with the property that removing a vertex (and its adjacent edges) from $T $ creates two coherent components $T_1,T_2$ which are also trees. For$ i=1,2,$ we denote by Vi the number of vertices of Ti and by Ei the number of edges of $T_i$ . If $|V1|=|E2|+7$ find $|V1|$.
2) From image 1,2 find if they are Eulerian and Hamiltonian Graphs for each of them.
3) Consider the graph G with vertices $\{2,3,6,7,9,10,11,22\}$ and edges the pairs ${i,j}$ for which greatest_common_divisor$(i,j)≠1$
How many coherent components does G have? (Hint: draw the graph and measure the coherent components).
Kratos
55
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Kav10
1.9K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 704 views
- $30.00
Related Questions
- Proof by induction the following recursive equation
- [Discrete Mathematics] Big-O Notation
- Why does this spatial discretization with n intervals have a position of (n-1)/n for each interval?
- Discrete Math Question
- Singular Value Decomposition Example
- Discrete Structures - Proving a statement true
- Discrete Test
- Growth of Functions
What makes a component "coherent"? Is that a synonym for "connected"?
coherent means connected yes. Thats the meaning