[Modules] Show that $h_3$ is injective given comutative diagram

Let $R$ be a ring with $1$. Consider the comutative diagram of $R-modules$ with exact lines attached.
Show that if $h_2$ and $h_4$ are injective and $h_1$ is surjective, then $h_3$ is injective.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
  • Hey, gareat job! Would you be able to answer the other question I asked about modules?

  • I think I have seen that question some time ago, but I cannot remember how to solve it now. Someone more proficient in algebra than me should take it.

The answer is accepted.