Doubt about Vector Spaces A∩B
Hello, in my university exam, I came across the following problem:
Find the basis of A∩B for A=lin{ a1, a2, a3} and B=lin{b1, b2, b3}.
My question is, if I prove that: b1, b2 ∈ A, is it undeniably certain that A∩B=lin{b1, b2}?
I demonstrated in the specific case of my exam (where there were indeed numbers) that b3 is linearly independent from a1, a2, and a3, while b1 and b2 are linearly dependent on a1 and a2.
1 Answer
If I prove that: $b_1, b_2 \in A$, is it undeniably certain that $A\cap B=lin\{b_1, b_2\}$?
The answer is NO. You can simply take $A=B=\{i,j,k\}$. Then $A\cap B=\{i,j,k\}.$
In general, it is posisble to also $b_3 \in A$, and if $b_3$ is linearly independent from $b_1$ and $b_2$, then
$$b_3 \in lin\{b_1, b_2,b_2\} \text{but} b_3 \notin lin\{b_1, b_2\}.$$
So $A\cap B \neq lin\{b_1, b_2\}.$
However, if $b_3$ is not linearly independent of $b_1$ and $b_2$, then $A\cap B=lin\{b_1, b_2\}$ is true.
- 1 Answer
- 399 views
- Pro Bono
Related Questions
- Free Body Diagram: determine the vertical reaction at the left hand beam support.
- Representation theory quick question
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks
- Please help me with this math question
- I have a question for 0/0 being undefined and wonder if anybody has a refutation.
- Find an expression for the total area of the figure expressed by x.
- A word problem about a rectangular carpet
- Step by step method to solve the following problem: find coordinates of B.