Doubt about Vector Spaces A∩B
Hello, in my university exam, I came across the following problem:
Find the basis of A∩B for A=lin{ a1, a2, a3} and B=lin{b1, b2, b3}.
My question is, if I prove that: b1, b2 ∈ A, is it undeniably certain that A∩B=lin{b1, b2}?
I demonstrated in the specific case of my exam (where there were indeed numbers) that b3 is linearly independent from a1, a2, and a3, while b1 and b2 are linearly dependent on a1 and a2.
1 Answer
If I prove that: $b_1, b_2 \in A$, is it undeniably certain that $A\cap B=lin\{b_1, b_2\}$?
The answer is NO. You can simply take $A=B=\{i,j,k\}$. Then $A\cap B=\{i,j,k\}.$
In general, it is posisble to also $b_3 \in A$, and if $b_3$ is linearly independent from $b_1$ and $b_2$, then
$$b_3 \in lin\{b_1, b_2,b_2\} \text{but} b_3 \notin lin\{b_1, b_2\}.$$
So $A\cap B \neq lin\{b_1, b_2\}.$
However, if $b_3$ is not linearly independent of $b_1$ and $b_2$, then $A\cap B=lin\{b_1, b_2\}$ is true.
- 1 Answer
- 264 views
- Pro Bono
Related Questions
- Linear Algebra - Matrices and Inverses Matrices
- Abstract Algebra : Commutativity and Abelian property in Groups and Rings
- Points of intersection between a vertical and horizontal parabola
- Module isomorphism and length of tensor product.
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Determine the angle
- How to adjust for an additional variable.
- Five times the larger of two consecutive odd integers is equal to one more than eight times the smaller. Find the integers.