Doubt about Vector Spaces A∩B
Hello, in my university exam, I came across the following problem:
Find the basis of A∩B for A=lin{ a1, a2, a3} and B=lin{b1, b2, b3}.
My question is, if I prove that: b1, b2 ∈ A, is it undeniably certain that A∩B=lin{b1, b2}?
I demonstrated in the specific case of my exam (where there were indeed numbers) that b3 is linearly independent from a1, a2, and a3, while b1 and b2 are linearly dependent on a1 and a2.
1 Answer
If I prove that: $b_1, b_2 \in A$, is it undeniably certain that $A\cap B=lin\{b_1, b_2\}$?
The answer is NO. You can simply take $A=B=\{i,j,k\}$. Then $A\cap B=\{i,j,k\}.$
In general, it is posisble to also $b_3 \in A$, and if $b_3$ is linearly independent from $b_1$ and $b_2$, then
$$b_3 \in lin\{b_1, b_2,b_2\} \text{but} b_3 \notin lin\{b_1, b_2\}.$$
So $A\cap B \neq lin\{b_1, b_2\}.$
However, if $b_3$ is not linearly independent of $b_1$ and $b_2$, then $A\cap B=lin\{b_1, b_2\}$ is true.
- 1 Answer
- 418 views
- Pro Bono
Related Questions
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Algebra Word Problem #2
- The last six digits of the number $30001^{18} $
- Algebraic and Graphical Modelling Question
- Representation theory 2 questions
- MAT-144 Assignment
- Suppose that $(ab)^3 = a^3 b^3$ for all $a, b \in G$. Prove that G must be an abelian goup [Group Theory].