Doubt about Vector Spaces A∩B
Hello, in my university exam, I came across the following problem:
Find the basis of A∩B for A=lin{ a1, a2, a3} and B=lin{b1, b2, b3}.
My question is, if I prove that: b1, b2 ∈ A, is it undeniably certain that A∩B=lin{b1, b2}?
I demonstrated in the specific case of my exam (where there were indeed numbers) that b3 is linearly independent from a1, a2, and a3, while b1 and b2 are linearly dependent on a1 and a2.
1 Answer
If I prove that: $b_1, b_2 \in A$, is it undeniably certain that $A\cap B=lin\{b_1, b_2\}$?
The answer is NO. You can simply take $A=B=\{i,j,k\}$. Then $A\cap B=\{i,j,k\}.$
In general, it is posisble to also $b_3 \in A$, and if $b_3$ is linearly independent from $b_1$ and $b_2$, then
$$b_3 \in lin\{b_1, b_2,b_2\} \text{but} b_3 \notin lin\{b_1, b_2\}.$$
So $A\cap B \neq lin\{b_1, b_2\}.$
However, if $b_3$ is not linearly independent of $b_1$ and $b_2$, then $A\cap B=lin\{b_1, b_2\}$ is true.

- 1 Answer
- 350 views
- Pro Bono
Related Questions
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible
- Graph the pair of equations in the same rectangular coordinate system: Y=-2x ; y=-2
- $Tor$ over finite rings
- Get area of rotated polygon knowing all coordinates and angle.
- Consider the plane in R^4 , calculate an orthonormal basis
- Algebra Word Problem 1
- Calculating Speed and Velocity
- Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.