Find an invertable matrix P such that $P^{-1} $ is diagonal.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 710 views
- $8.00
Related Questions
- Show that eigenvectors of a symmetric matrix are orthogonal
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- Help with probability proofs and matrices proofs (5 problems)
- Show that the $5\times 5$ matrix is not invertable
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Matrices Multiplication
- Matrices Problem
- Frontal solver by Bruce Irons? Am I using the right Algorithm here?
Are you sure the question statement is correct ? Is it P inverse or D as per diagonalization
If the given matrix is A then you need to find A= PD(P^-1) where P is invertible and D is diagonal?
Sorry, missed it in the formula creator
Okay so basically we need to do a decomposition