AVERAGING HIGHLY DISCONTINUOUS FUNCTIONS WITH UNDEFINED
EXPECTED VALUES USING FAMILIES OF BOUNDED FUNCTIONS

BHARATH KRISHNAN

ABSTRACT. Let n € N and suppose f : A C R™ — R is a function, where A and f are Borel. We want
a unique, satisfying average of highly discontinuous f, taking finite values only. For instance, consider
an everywhere surjective f, where its graph has zero Hausdorff measure in its dimension and a nowhere
continuous f defined on the rationals. The problem is that the expected value of these examples of f, w.r.t.
the Hausdorff measure in its dimension, is undefined. Thus, take any chosen family of bounded functions
converging to f with the same satisfying and finite expected value, where the term “satisfying” is explained
in the third paragraph.

The importance of this solution is that it solves the following problem: the set of all f € R4 with a
finite expected value, forms a shy “measure zero” subset of R4. This issue is solved since the set of all
f € R4, where there exists a family of bounded functions converging to f with a finite expected value, forms
a prevalent “full measure” subset of R4, Despite this, the set of all f € R4—where two or more families of
bounded functions converging to f have different expected values—forms a prevalent subset of R4, Hence,
we need a choice function which chooses a subset of all families of bounded functions converging to f with
the same satisfying and finite expected value.

Notice, “satisfying” is explained in a leading question which uses rigorous versions of phrases in the former
paragraph and the “measure” of the chosen families of each bounded function’s graph involving partitioning
each graph into equal measure sets and taking the following—a sample point from each partition, pathways
of line segments between sample points, lengths of line segments in each pathway, removed lengths which
are outliers, remaining lengths which are converted into a probability distribution, and the entropy of the
distribution. In addition, we define a fixed rate of expansion versus the actual rate of expansion of a family
of each bounded function’s graph.

Keywords. Discontinuity, Hausdorff measure, Expected Value, Function Space, Prevalent and Shy Sets,
Partitions, Samples, Euclidean Distance, Entropy, Choice Function

1. INTRO

Let n € N and suppose f : A C R" — R is a function, where A and f are Borel. We want a unique,
satisfying average of highly discontinuous f, taking finite values only. For instance, consider an everywhere
surjective f, where its graph has zero Hausdorff measure in its dimension (Section and a nowhere
continuous f defined on the rationals (Section [2.2).

The problem is the expected value of these examples of f, w.r.t. the Hausdorff measure in its dimension, is
undefined (Section . In particular, the graph of an everywhere surjectiveﬂ f : R — R could have Hausdorff
dimension 2 with zero 2-d Hausdorff measure. Thereby, the function cannot be integrated w.r.t. the Hausdorff
measure. Moreover, the expected value of a nowhere continuous f : QQ — R can be any value between inf f
and sup f depending on the enumeration of Q (Section .

To fix this dilemma, take the expected value of any family of bounded functions converging to f (Section
[2.3.3); however, depending on the chosen family of bounded functions converging to f (Section [2.3.2)), the
expected value can be one of several values (Theorem . Hence, we define a leading question (Section
which chooses families of bounded functions with the same “satisfying” and finite expected value, where the
term “satisfying” is explained rigorously.

We expand on the importance of the leading question with two problems (i.e., informal versions of Theorems

2] and [4)):

Date: September 14, 2025.
1 The function f : R — R is everywhere surjective, when f[(a,b)] = R for all non-empty open intervals (a,b). The general
definition can be found in Section
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(1) If F C R4 is the set of all f € R4, where the expected value of f w.r.t. the Hausdorff measure in its
dimension is finite, then F' is shy (Section .
e If F C R4 is shy [16], we say “almost no” element of R* lies in F.
(2) If F C R4 is the set of all f € R, where two families of bounded functions converging to f have different
expected values, then F' is prevalent (Section .
o If F C R4 is prevalent [16], we say “almost all” elements of R* lies in F.

This means “almost no” f € R4 have finite expected values and “almost all” f € R4 have two or more
families of bounded functions converging to f (Section [2.3.2]) with different expected values. Hence, these
problems need to be resolved by the leading question.

In Section |5, we clarify the leading question (Section by applying the rigorous definitions of the
question to specific examples (Section . We also define the “measure” (Section Section
of the family of each bounded function’s graph, such that the family of bounded functions converges to f
(Section . This is crucial for defining a “satisfying” expected value.

The “measure” (Section |5.3.1} Section is derived from examples of f with a discrete or countably
infinite graph and generahzed to f with non—discrete and uncountable graphs. Therefore, the “measure” is
defined by the following;:

(1) Cover each graph with minimal, pairwise disjoint sets of equal ¢ Hausdorff measure (Section step
(2) Take a sample point from each set in the cover (Section [5.3.1] step [2)
(3) Take a “pathway of line segments” (Section [5. step EE’;L
(a) Take a line segment from the sample pomt x¢ to a sample point (excluding xg) with the smallest
Euclidean distance to x¢ (i.e., when more than one point has the smallest Euclidean distance to xg,
take either of those points). Call this point x;.
(b) Take a line segment from the sample point x; to a sample point (excluding x¢ and x;) with the smallest
Euclidean distance to x; (i.e., when more than one point has the smallest Euclidean distance to xi,
take either of those points). Call this point X
(c¢) Take a line segment from the sample point xs to a sample point (excluding xg,x1,x2) with the smallest
Euclidean distance to xa (i.e., when more than one point has the smallest Euclidean distance to xa,
take either of those points). Call this point x3.
(d) Repeat this process until the pathway intersects with every sample point once
(4) Take the length of each line segment in the pathway and remove the outliers which are more than C > 0
times the interquartile range of the lengths of all line segments as ¢ — 0 (Section step @
(5) Multiply the remaining lengths by a constant to get a probability distribution (Section @ step @

(6) Take the entropy of the distribution (Section step
1 step@

(7) Take the maximum entropy w.r.t. all pathways (Section [5.3

Since the “measure” is extremely long and over-sophisticated, the definition needs to be simplified. To better
understand this definition, consider these examples (Section [5.3.4}5.3.6).

Next, we define the fixed rate of expansion versus the actual rate of expansion of the family of each
bounded function’s graph (Section . The fixed rate of expansion is arbitrary and written as the function
E:R—R(eg., E(r) =1). Meanwhile, the actual rate of expansion of a family of each bounded function’s
graph is a function of the “average” (n + 1)-dimensional Euclidean distance between every point in each
bounded function’s graph and the reference point C' € R™*1.

Combining “the measure” and the actual rate of expansion of each bounded function’s graph, we get a
general notion of the choice function in the leading question (Section [3.1). The choice function should pick a
family of bounded functions converging to f which satisfy all the criteria in the leading question. Note, when
all other criteria in the leading question (Section are satisfied, then

(1) the greater the rate of increase of the “measure” (Section [5. Section of the chosen family of
each bounded function’s graph compared to that of other famlhes of each bounded function’s graph

(2) the smaller the absolute difference between the (n + 1)-th coordinate of the reference point C' € R™*1
and the expected value of the chosen family of bounded functions converging to f (Section

(3) the smaller the absolute difference between the fixed rate of expansion and the actual rate of expansion
of the chosen family of each bounded function’s graph (Section ,



AVERAGING HIGHLY DISCONTINUOUS FUNCTIONS 3

the more likely the choice function, which answers the leading question, chooses the desired family. Hence, we
take the expected value of the chosen family as the new expected value. (However, the choice function must
actually take multiple families of bounded functions converging to f such that, for any function f € R4, their
expected values are the same “satisfying” and finite value.) We also want the new average of f : A CR"™ — R,
where A and f are Borel, to exist for all f in a prevalent (Section [2.4]) subset of R4.

Finally, we answer the leading question (Section in Section [6} Since the answer is complicated, is
likely incorrect, and the actual answer might not admit an unique expected value, it is best to keep refining
the leading question (Section rather than worrying about an immediate solution.

2. FORMALIZING THE INTRO

We want a unique, satisfying average of the functions in Sections [2.1] and 2:2] which takes finite values
only. We explain a new method for averaging in later sections, starting with Section [2.3.1}

2.1. First special case of f. If G is the graph of the function f: A C R™ — R, where A and f are Borel,
we want an explicit f such that:

(1) The function f: A CR™ — R is everywhere surjective,
Let (A, T) be a standard topology. A function f: A — R is everywhere surjective from
A to R, if f[V] =R for every V € T.
(2) If dimg(-) is the Hausdorff dimension and H4™#()(.) is the Hausdorff measure in its dimension
on the Borel g-algebra, then H4™u (@) (G) = 0.

2.1.1. Potential Fxample. If A =R, using this post [5]:

Consider a Cantor set C C [0, 1] with Hausdorft dimension 0 [6]. Now consider a countable
disjoint union U,,en Cy, such that each C,, is the image of C by some affine map and every
open set O C [0, 1] contains C,, for some m. Such a countable collection can be obtained by
e.g. at letting C,,, be contained in the biggest connected component of [0,1]\ (C;1 U---UCp—1)
(with the center of C,,, being the middle point of the component).

Note that U,,C,, has Hausdorff dimension 0, so (U;,C,) x [0,1] € R? has Hausdorff
dimension one [4].

Now, let g : [0,1] — R such that g|c,, is a bijection C,, — R for all m (all of them can be
constructed from a single bijection C — R, which can be obtained without choice, although it
may be ugly to define) and outside U,,,C,, let g be defined by g(z) = h(z), where h : [0,1] = R
has a graph with Hausdorff dimension 2 [I7] (this doesn’t require choice either).

Then, the function g has a graph with Hausdorff dimension 2 and is everywhere surjective,
but its graph has Lebesgue measure 0 because it is a graph (so it admits uncountably many
disjoint vertical translates).

Note, we can make the construction with union of C,, rather explicit as follows. Split
the binary expansion of z as strings of size with a power of two, say x = 0.1101000010. ..
becomes (8o, 1, 82, ...) = (1,10,1000,...). If this family eventually contains only strings of
the form 0---0 or 1---1, say after s, then send it to y = Zi>0 €27 where sy = € - €.
Otherwise, send it to the explicit continuous function h given by the linked article [I7]. This
will give you something from [0,1) — [0,1)

Finally, compose an explicit (reasonable) bijection from [0,1) to R. In your case, the
construction can be easily adapted so that the [0,1] or [0,1) target space is actually (0, 1),
then compose with t — (1 —22)/(2? — ).

In case we cannot obtain a unique, satisfying, and finite average (Section from this example in Section
consider the following:

2.2. Second special case of f. Suppose, we define A = Q, where f: A — R is a function:

) = 1 ze{(2s+1)/(2t):s€Z,t e N,t #0}
YT 0 wg{(2s+1)/(20) s €Tt €Nt #£0)

In the next section, we state the purpose of Section [2:1] and Section [2:2]
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2.3. Motivation for Section and Suppose,

(1) dimg(+) is the Hausdorff dimension
(2) HAmu()(.) is the Hausdorff measure in its dimension on the Borel g-algebra
(3) the integral is defined, w.r.t. the Hausdorfl measure in its dimension.

the expected value of f: A C R™ — R, where A and f are Borel, w.r.t. the Hausdorff measure in its dimension
is the following:

E[f] = 7HdimH1(A) (A) /Afd’HdimH(A) (2)

Then, using Section the integral of f w.r.t. the Hausdorff measure in its dimension is undefined: i.e.,
the graph of f has Hausdorff dimension 2 with zero 2-d Hausdorff measure. Hence, E[f] is not defined.

Moreover, observe in Section f is nowhere continuous and defined on a countably infinite set, which
means depending on the enumeration of A = Q or the sequence {a,}>,, the expected value of f (when it
exists) is:

E[f] = lim flar) + flaz) + -+ flar) 3)
t—o0 t
which is any number from inf f to sup f. Thus, we need a specific enumeration which gives a unique, satisfying,
and finite expected value, generalizing this process to nowhere continuous functions defined on uncountable
domains.

Therefore, we want the “expected value of chosen families of bounded functions converging to f with the
same satisfying and finite expected value” which is described rigorously in later sections; however, consider

the following definitions beginning with Section

2.3.1. Definition of Family of Functions and Sets. Let n € N and suppose f : A CR™ — R is a function,
where A and f are Borel.

Let dimg(-) be the Hausdorff dimension, where H4™1()(.) be the Hausdorff dimension measure in its
dimension on the Borel o-algebra. If 3(A) C A is the index set and the cardinality is | - |, then suppose
|B(A)| = |A]. Thus, for every a,b € R where:

HEA(AA) N (a,0) _ o (R (B(A) O (a,]))
HIma (A (AN (a,0))  sACA ( HAma(A) (A (a, b)) ) :

then for each r € A(A), there is a corresponding set A, and a corresponding function f, : A, — R such that
the indexed family of sets is {4, : r € A(A)} and the indexed family of functions is {f, : r € A(4)}.

Note, when A is countably infinite, then A(A) = N and when A = R", A(4) = {(a1, - ,an) €EA:q €
{1,---,n},ay > 0}

2.3.2. Definition of Families of Functions Converging to f. Let n € N and suppose f: A CR” - R is a
function, where A and f are Borel.

The family of functions {f, : » € A(A)} (Section [2.3.1)), where {4, : r € A(A)} is a family of sets and
fr+ A — R is a function, converges to f when:

For any (x1,--- ,x,) € A, there exists an indexed family z, € A, s.t. , — (z1, -, x,) and
fr(ir) — f(xla t 'axn)~

This is equivalent to:

(frs Ar) = (f, A)

2.3.3. Expected Value of Families of Functions Converging to f. Hence, suppose:
o (fr,A:) — (f, A) (Section [2.3.2)

e || - || is the absolute value

e dimy(-) is the Hausdorff dimension

o H4mu()(.) is the Hausdorff measure in its dimension on the Borel o-algebra

e the integral is defined, w.r.t. the Hausdorff measure in its dimension
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The expected value of {f, : € A(A)} is a real number E[f,], when the following is true:
1 im r
V(e > 0)3(N € A(A)V(r € A(A)) (7‘ >N= Hm /A fr dH A E[mH < e) (4)

when no such E[f,] exists, E[f,] is infinite or undefined. (If the graph of f has zero Hausdorff measure in its
dimension, replace H4™1(4r) with the generalized Hausdorff measure 000 [1 p.26-33].)

2.3.4. The Set of All Bounded Functions/Sets. Let n € N and suppose the function f: A C R™ — R, where
A and f are Borel. Let dimy(-) be the Hausdorff dimension, where H4™1()(.) be the Hausdorff measure in
its dimension on the Borel o-algebra. Then, define the following:
Let Q be a set.

(1) B(Q) is the set of all bounded Borel sets X C Q where 0 < H4m#(X) (X)) < 400

(2) B(Q) is the set of all bounded Borel functions with domain Q where 0 < H4™1(Q)(Q) < +o0
For example, B(R") is the set of all bounded Borel subsets of R™ with a positive and finite Hausdorff measure
in the dimension of X and B([1,2]) is the set of all bounded Borel functions on [1,2] since #*([1,2]) = 1 and
0 < H'([1,2]) < +o0. Note, however:

Theorem 1. For allr,v € A(A) (Section[2.3.1]), suppose A,, B, € B(R™), where f, € B(A,) and g, € B(B,)
i/

(Section|2.3.4). There exists a f € RA, where (f,, Ar), (gv, By) — (f, A) (Section|2.3.4) and E[f.] # E[g,]
(Section [2.5.5).

For instance, the expected values of the families of bounded functions converging to f in Section [2.I] and
satisfy Theorem [I] For simplicity, we illustrate this with Section

2.3.5. Example Illustrating Theorem . For the second case of Borel f: A CR™ — R (Section , where
A =Q, and:
f(x)_{1 ze{(2s+1)/(2t): s € Z,t € N,t # 0} -
0 z&{(2s+1)/(2t):s€Z,t € N,t#0}
suppose:
{4, :re A(A) =N} =({¢/rliceZ,—r-r'<c<r-rl})ren

and

{By:ve A(A) =N} =({c¢/d:c€Z,deN,d<v,—d-v<c¢<d- v})pen
where for f,: A, — R,

fr(x) = f(z) for all z € A, (6)
and for g, : B, = R
go(z) = f(z) for all x € B, (7)
Note, for all r,v € N:
o sup(d,) =1
e inf(4,)=—r
e sup(B,) =v

e inf(B,) =—v
e Since f is bounded, f, and g, are bounded
Hence, A, B, € B(R"), where f, € B(A,) and g, € B(B,) (Section . Also, the set-theoretic limit
of {A,:r €N} and {B,:v €N} is A=Q: ie,
limsup A, = ﬂ U A,
r—00 r>1gor
liminf A, = U ﬂ Ay
r—00 r>1 gor
where:
limsup A, =liminf A, = A=Q
r—00 r—00
limsup B, = liminf B, = A=Q
vV— 00

vV—>00
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(We do not not know how to prove the set-theoretic limits; however, a mathematician specializing in analysis

should be able to confirm.)
Therefore, (f, Ar), (gv, By) = (f, A) (Theorem [1)).

Now, suppose we want to average {f, : r € A(A) := N} and {g, : v € A(A) := N}, which we denote E[f,]

and E[g,]. Note, this is the same as computing the following (i.e., the cardinality is | - | and the absolute
value is || - ||):
1
V(e>O)H(NeN)V(reN r>N:> m/ FdHO — . (8)
rl JA,
V(e > 0)3(N € N)¥(r € N) <T>N: |Zf
T TEA,

V(e > 0)3(N € N)V(v € N) (va:» |B‘/ fdH® —Elg,]

<)
)
<) =
1=

V(e > 0)3(N € N)¥(v € N) <v>N:> Bl > f
r€B,

Thus, if we assume E[f,] = 1 in Equation [8] using [12]:

The sum ) 4. f(x) counts the number of fractions with an even denominator and an odd
numerator in set A*, after canceling all possible factors of 2 in the fraction. Let us consider
the first case. We can write:

L—|A71 ) fla)

TEA,

= <|Ar| - Z f(.%')) /|Ar| = H(r>/|Ar|
TEA,

where H(r) counts the fractions x = ¢/r! in A, that are not counted in ) ... f(z), i.e.,
for which f(z) = 0. This is the case when the denominator is odd after the cancellation
of the factors of 2, i.e., when the numerator ¢ has a number of factors of 2 greater than
or equal to that of r!, which we will denote by V(r) := va(r!) a.k.a the 2-valuation of r!,
0eis:A11371(r) = 7 — O(In(r)) [14]. That means, ¢ must be a multiple of 2("). The number
of such ¢ with —r-r! < ¢ < r-r is simply the length of that interval, equal to |A,| = 2r(r!) +1,
divided by 2V (). Thus,

1= A7) fla)

TEA,

— [|4,1/2V D]/ A, | ~ 1/2V) = 1/gn-OCosm)

This obviously tends to zero, proving E[f,] =1

Last, we need to show E[g,] = 1/3 in Equation [0} where 1 = E[f,] # E[g,] = 1/3. This proves Theorem

Concerning the second case [12], it is again simpler to consider the complementary set
of x € B, such that the denominator is odd when all possible factors of 2 are canceled.
We can see that for v = 2p — 1, and these obviously include all those we had for smaller
v. The “new” elements in B, with v = 2p — 1 are those that have the denominator
d = 2p — 1 when written in lowest terms. Their number is equal to the number of x < d,
ged(k,d) = 1, which is given by Euler’s ¢ function. Since we also consider negative fractions,
we have to multiply this by 2. Including z = 0, we have G(v) = |{z € B,|f(z) =0} | =
1423 <p<p/2 @26 + 1). There is no simple explicit expression for this (cf. oeis:A99957
[15]), but we know that G(v) =1+ 2- A99957(v/2) ~ 2 -8(v/2)?/n? = 4v?/x? [15]. On the
other hand, the total number of all elements of B, is |B,| =1+2)",_, ., #(k), since each
time we increase v by 1, we have the additional fractions with the new denominator d = v
and the numerators are coprime with d, again with the sign + or —. From oeis:A002088
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[13] we know that >, _, #(k) = 3v? /7% 4+ O(vlogw), so | B,| ~ 6v%/m?, which finally gives
Bu ™ e, £(2) = (1Bl — G())/|Bul ~ (6 — 4)/6 = 1/3 as desired.
Hence, 1/3 = E[g,] # E[f,] = 1, proving Theorem[I] Thus, consider:

2.4. Definition of Prevalent and Shy Sets. Let X be a completely metrizable topological space. A Borel
set £ C X is said to be prevalent if there exists a Borel measure p on X such that:

(1) 0 < p(C) < oo for some compact subset C' of X, and
(2) the set E' + x has full y-measure (that is, the complement of E + x has measure zero) for all z € X.

More generally, a subset F' of X is prevalent if F' contains a prevalent Borel Set.
Moreover:

e The complement of a prevelant set is a shy set.
Hence:

o If /' C X is prevelant, we say “almost every” element of X lies in F.
o If ' C X is shy, we say “almost no” element of X lies in F.

To learn more, see [16].

2.5. Secondary Motivation For A New Average. Suppose,

(1) dimg(+) is the Hausdorff dimension
(2) HImu()(.) is the Hausdorff measure in its dimension on the Borel o-algebra
(3) the integral is defined, w.r.t. the Hausdorff measure in its dimension.

the expected value of f : A C R™ — R, where A and f are Borel, w.r.t. the Hausdorff measure in its dimension
is the following:

_ 1 dimp (A)
E[f] = 7—[C“IHH(A)(A)_/Ade (10)
Hence, consider the following:
Theorem 2. If F C R is the set of all f € RA, where E[f] is finite, then F is shy (Section ,

Issue with Theorem [2| “Almost no” f € R4 have finite expected values, which is important since finite
averages are more useful than infinite or undefined averages.

Proof of Theorem [2. We follow the argument presented in Example 3.6 of this paper [16], take X := L°(A)
(measurable functions over A), let P denote the one-dimensional subspace of A consisting of constant functions
(assuming the Lebesgue measure on A) and let F := L°(A) \ L'(A) (measurable functions over A without
finite integral). Let Ap denote the Lebesgue measure over P, for any fixed f € F:

Ap <{aeR /A(f+a)du<oo}) =0

Meaning P is a one-dimensional, so f is a 1-prevalent set (Il

We solve the issue in Theorem [ with Note Bl

Note 3 (Solving The Issue In Theorem [2)). For all r € A(A) (Section[2.3.1]), suppose that A, € B(R")
and f, € B(A,) (Section . If F C R is the set of all f € RA, where there exists A, € B(R") and

fr € B(A,) such that (fr, Ar) = (f, A) (Section[2.3.9) and E[f,] is finite (Section[2.3.3), then F should be
prevalent (Section or neither prevalent nor shy (Section .

Theorem 4. For allr,v € A(A) (Sectionm, suppose A, B, € B(R™), where f,. € B(A,) and g, € B(By)
(Section . When F C RA is the set of all f € RA, where (fr, A,), (go, By) — (f, A) (Sectian and

Elf,] # Elgy] (Section[2.5.9), then F is prevalent (Section .
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Issue with Theorem [4] For “almost all” f € R4, depending on the chosen family of bounded functions
{fr:7 € A(A)} where (f,, A) = (f, A) (Section [2.3.2)), E[f,] can be more than one value. Hence, E[f,] is
non-unique.

Proof of Theorem [J). For all r,v € A(A) (Section , suppose A,, B, € B(R™) where f,. € B(A,) and
gv € B(B,) (Section. Therefore, suppose U C R* is the set of all f € R4 whose lines of symmetry
intersect at one point, where if (f, A.), (g, By) = (f, A) (Section 2.3.2)), then E[f,] = E[g,] (Section [2.3.3).
In addition, U’ C R4 is the set of symmetric f € R4 which clearly forms a shy subset of R4. Since U C U’,
we have proven that U is also shy (i.e., a subset of a shy set is also shy). Since the complement of the shy set
U is prevalent, ' = R4\ U is prevalent, such that for all f € F, (f., A,.), (9o, Ay) — (f, A) and E[f,.] # E[g,].
If this is correct, we have proven Theorem O

We solve the issue in Theorem [ with Note [B

Note 5 (Solving The Issue In Theorem . Suppose B C B(R"™) is an arbitrary set, where for all
r € A(A) (Section , A, € B and # C B(A,), such that f, € B (Section . If F C RA is the set
of all f € RA, where (f., A,) — (f, A) (Sectz'on and E[f;] is unique (Section , then F' should be
prevelant (Section [2.4).

Since Theorems [2] and [4] are true, we need to solve both Theorems at once by combining Notes [3] and

(See Section 2.5.1] )

2.5.1. Approach.

Suppose B C B(R™) is an arbitrary set, where for all r € A(A) (Section[2.3.1), A, € B and
% C B(A,) such that f, € Z (Section 2.3.4). If F C R4 is the collection of all f € R4,
where (fr, A,) = (f, A) (Section[2.3.2) and E[f,] is unique (Section [2.3.3), satisfying (Section
and finite, then F' should be:

(1) a prevalent (Section subset of R4

(2) If not prgvalent (Section then neither prevalent (Section nor shy (Section

subset of R“.

3. ATTEMPT TO DEFINE “SATISFYING” IN THE APPROACH OF SECTION [2.5.1]

3.1. Leading Question. To define satisfying in the blockquote of Section 2.5.1} we ask the leading
question...

Suppose, for all r,v € A(A) (Section [2.3.1), B C B(R™) is an arbitrary set (Section [2.3.4)),
where AX € B and B C B(A}) (Section [2.3.4]) such that:

(A) f} € % (Section [2.3.4)

(B) Ar* € B(R™)\ B and f;* € B(Ay*) U (B(A;) \ 8) (Section [2.3.4)

(C) {Gr:re A(A)} = {graph(f}) : r € A(A)} is the family of the graph of each f (Section
93.9)

(D) C is a reference point in R**! (e.g., the origin)

(E) E: A(A) — Ris a function and the fixed rate of expansion: e.g., E(r) = 1 (Section [3.1]C,
Section [3.1}D)

(F) £(C,Gy) is the actual rate of expansion of {G} : r € A(A)} w.r.t. a reference point C

(Section C7 Section D, Section

Does there exist a choice function which chooses a set B C B(R"), where for all r € A(A),

A% € B and # C B(A;) such that when f} € £:

(1) (fr,Ar) — (f,A) (Section 2:3.2)

(2) For all v € A(A), where for each AF* € B(R™)\ B and f}* € B(A*)U(B(Ar)\ &), when
(fx*, A3*) — (f, A), the “measure” (Section [5.3.1] Section[5.3.3) of {G} : r € A(A)} =
{graph(f}) : r € A(A)} (Section [B.1}C) must increase at a rate linear or superlinear to
that of {G3* : v € A(A)} = {graph(f}*) : v € A(A)} (Section[3.1]C)

(3) E[f?] is unique and finite (Section |2.3.3))
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(4) Foreach Ar € Band f¥ € A satisfying , and , when f is unbounded (i.e, skip
when f is bounded), then for every set B’ C B(R™) and for all s € N, where for each AS** € B’
and for every set ' C B(A*), When* = kxx, 7 s, B B, and B — %' in , and
([3), then when f3** € %' satisfies (1)), (2) and (3):

o If the absolute valueis || - || and the (n + 1)-th coordinate of C' (Section[3.1]D) is @41,
[ELf] — zns1|] < [E[f2**] — zp41]| (Section2.3.2] Sectlon-

o If r € A(A), then for all linear s; : A(A) — A(A), where s = s1(r) and the Big-O
notation is O, there exists a function K : R — R, where the absolute value s || - || and
(Section (3.1} E-F):

I1E(C, GT) = E(r)]] =O(K(|[E(C, GT™) = E(s)]])
=O(K([[E(C, GLTy) = E(si(r)])

such that:
0< lim K(z)/z < 400

r——+00
In simpler terms, “the rate of divergence” of ||€(C, G) — E(r)|| (Section[3.1] E-F) is less
than or equal to “the rate of divergence” of ||€(C, G&**) — E(s)|| (Section[3.1E-F).
(5) When set F C R4 is the set of all f € R4, where a choice function chooses a collection
B C B(R™), where A} € Band # C B(A}) such that f} € % satisfies (1), (), (3) and (4),
then F' should be:
(a) aprevelant (Sectlon. subset of R4
(b) Ifnot (a]), then neither a prevalent (Section 2.4) nor shy (Sectlon. subset of R4
(6) Out of all choice functions which satisfy (I), (2), (3)), (4) and (5, we choose the one with the
simplest form, meaning for each choice function fully expanded, we take the one with the
fewest variables/numbers?

Note 6 (Checking The Validity of The Leading Question). Unless the choice function chooses all
fr € B (Section[3.1LA) which are equivalent to each other (Note[8, page[25), E[f] (Section[5.1] crit. [3)
might not be unique nor satisfying enough to answer the approach of Section[2.5.1. Hence, adjustments are
possible by changing the criteria or adding new criteria to Section[3.1]

(In case this is unclear, see Section[])

4. QUESTION REGARDING MY WORK

Most researchers do not have time to address everything in this paper, hence we ask the following:

Is there a research paper which already solves the ideas in this paper? (Non-published papers,
such as [10], do not count.)

Note, these papers might be useful [7,8] 2] 3.

5. CLARIFYING SECTION [3]

While reading Section[5} consider the following:
Is there a simpler version of the definitions below?

5.1. Example of families of Bounded Functions Converging to f (Section . Let n € Nand
suppose f : A CR™ — R is a function, where A and f are Borel.

The family of functions {f, : r € A(A)} (Section[2.3.1)), where {A, : r € A(A)} is a family of bounded sets and
fr + A — Ris a bounded function, converges to f when:

For any (x1,--+ ,x,) € A, there exists an indexed family z, € A, s.t. Z, — (z1,- -
fr(ir) - f(xla o 'axn)-

This is equivalent to:

-, &) and

(frs Ar) = (f, A)

Example 0.1 (Example of Section[5.1)). If A =R and f : A — R, where f(x) = 1/z, then an ezample of
{fr:7 € A(A) := R} (Section , such that fr: A, = R is:
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(1) {4, :r € A(A) =R} = {[-r,—1/r]U[1/r,r] : 7 € RT}
(2) fr(x)=1/x forx € A,
Example 0.2 (More Complex Example). If A=R and f: A — R, where f(x) = x, then an example of
{fr:7 € A(A) :=RF} (Section[2.3.1)), such that f, : A, — R is:
(1) {A:r e A(A) =Rt} ={[-r,r]: 7 €RT}
(2) fr(x) =2+ (1/r)sin(z) for x € A,
5.2. Expected Value of a Bounded family of Functions (Section . Hence, suppose:
o (frsAr) = (f, A) (Section[5.1))

e || - || is the absolute value

e dimy(-) be the Hausdorff dimension

o HAmu()(.) is the Hausdorff measure in its dimension on the Borel o-algebra
e the integral is defined, w.r.t. the Hausdorff measure in its dimension

The expected value of { f, : € A(A)} (Section|2.3.1)) is a real number E[f, ], when the following is true:

V(e > 0)3(N € A(A)V(r € A(A)) (7« >N = Hm /A fr dH (A _ E[fT]H < e) (11)

when no such E[f,] exists, E[f,] is infinite or undefined. (If the graph of f has zero Hausdorff measure in its
dimension, replace Hd™#(4r) with the generalized Hausdorff measure 000 [1 p.26-33].)

5.2.1. Ezxample. Using Example when A =R, f: A — R, and f(x) = 1/ where:
(1) {A:r e A(A) =R} ={[-r,—-1/r]U[1/r,r] : T € RT}

(2) fr(x)=1/zforz € A,

If we assume E[f,] = 0:

1 " dimpg (Ay)
V(e > 0)3(N € R)V(r € R) <1"ZN:> Hm " fr dHI™H —]E[f,,«]H <e> (12)
V(e > 0)3(N € R)V(r € R) (r >N = (13)
1 dimpg ([—7 —1/7]U[1/77])
- 1/x dH"MH ’ T — ol < 14
H wdimp (= =1/P 00/ D) (g —1/r) U [1/r, 7]) /[7'r'>71/'7‘]U[1/'r'>'r‘] /e ‘ o

1

' 1/z dH*
HI([—r, —1/r] U [1/7r,7]) /[—r,—l/r]u[l/r,r] /@

V(e > 0)3(N € R)V(r € R) <r >N =

< 5> (15)

r> N ! (/_1/T1/zdz+ i 1/zdz>
- (=1/r = (=) +(r—=1/r) \J=r 1/r

¥(e > 0)3I(N € R)V(r € R)

< e> (16)

1 1/ -
PN (mrein + |27 4 marein + <)

V(e > 0)A(N € R)V(r € R) EEEyE S y—

< e> (17)

(r—=1/r)+ (=1/r+7)

1
r>N = ||—— - 4In(r)

¥(e > 0)3I(N € R)V(r € R) YR

V(e > 0)3(N € R)V(r € R) <7"2N:> : (ln(H*rl\)*ln(\l*1/7“H)+1n(|\7"|\)*ln(\ll/rl\))H <6> (18)

< ) (9)

To prove Equation[19|is true, recall:
r<<er/2,el/r <e" (20)
r < el2, V) « (T2 (21)
re'/r) « /2 (22)
r < e/?/el/ () (23)
< er/2-1/(2r) (24)
In(r) < r/2—1/(2r) (25)
4In(r) < 2r —2/r (26)
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Hence, foralle > 0

41n(r) < e(2r —2/r) (27)
41n(r)
2r —2/r (28)
41n(r)
|25 )

Since Equation[19is true, E[f,] = 0. Note, if we simply took the average of f from (—o0, 00), using the improper
integral, the expected value:

T2 Tq

lim ! (/ 1 dz +/ 1 dx) = (30)

(z1,82,23,24) > (—00,07,0% +00) (T4 — x3) + (T2 — 1) \J,, T es T
1 T2 Tyq

lim In(||z +c( T+ In(||z]]) + € ): 31
(z1,22,23,24)—(—00,07,0F ,400) (-T4 —x3) + (432 — 1) ( ([l=Il) z1 ([l z3 (31)

. 1

lim (In([|z2]]) = In(l|z1]]) + In(l|z4]]) — In(||zs][)) (32)

(21,22,23,24)—(—00,07,0F ,+00) (T4 — x3) + (T2 — x1)

is +oo (when 2 = 1/x1, x3 = 1/x4, and 21 = exp (23)) or —oo (when xy = 1/, 23 = 1/24, and x4 =
—exp (:c%)), making E[f] undefined. (However, using Equation , we get the E[f,.] = 0instead of an undefined
value.)

5.3. Defining the “Measure”.

5.3.1. Preliminaries. We define the “measure” of {G} : r € A(A)}, in Section[5.3.3} which is the family of the
graph of each f;* (Section[3.1}C). To understand this “measure”, continue reading.

(1) For every r € A(A) (Section[2.3.1)), “over-cover” G} with minimal, pairwise disjoint sets of equal
HAmu(GL) measure. (We denote the equal measures e, where the former sentence is defined C(g, G, w):
i.e.,w € Q. , enumerates all collections of these sets covering G. In case this step is unclear, see Section
In addition, when there exists € A(A) such that H4™u(G2) (G#) = 0, replace the Hausdorff
measure H4™1(57) with the generalized Hausdorff measure 5#%h.s (% [1] p.26-33).)

(2) For every ¢, r and w, take a sample point from each set in C(g, G, w). The set of these points is
“the sample” which we define S(C(e, G, w), ¢): i.e., ¥ € U, ., enumerates all possible samples of
C(e, Gy, w). (If this is unclear, see Section[8.2})

(3) Foreverye,r,wand 1,

(a) Take a “pathway” of line segments:

(i) start with aline segment from sample point xg € S(C(e, G¥,w), ¥) to the sample point x; €
S(C(e,Gr w),¥) \ {x0} with the smallest (n + 1)-dimensional Euclidean distance to xg (i.e.,
when more than one sample point has the smallest (n + 1)-dimensional Euclidean distance to
X0, take either of those points).

(ii) Take a line segment from the sample point x; € S(C(g, GE, w),¥) to the sample point x €
S(C(e,Gr w),¥) \ {x0,x1} with the smallest Euclidean distance to x; (i.e., when more than
one sample point has the smallest Euclidean distance to x1, take either of those points).

(iii) Take a line segment from the sample point x5 € S(C(e, Gf,w), 1) to the sample point x3 €
S(C(e,Gr,w), ) \ {x0, %1, %2} with the smallest Euclidean distance to xz (i.e., when more
than one sample point has the smallest Euclidean distance to x2, take either of those points).

(iv) Repeat this process until the pathway intersects with every sample point once. (In case this is
unclear, see Section[3.3.1])

(b) Take the set of the length of all segments in (a]), except for lengths that are outliers (i.e., for any
constant C' > 0, the outliers are more than C times the interquartile range of the length of all line
segments as 7 — oo or € — 0). Define this £L(xq, S(C(e, Gf,w),)). (If this is unclear, see Section
83.2)

(¢) Multiply remaining lengths in the pathway by a constant so they add up to one (i.e., a probability
distribution). This will be denoted P(L(x¢, S(C(g, G, w),))). (In case thisis unclear, see Section
3.3.3)
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(d) Take the shannon entropy [I1}, p.61-95] of step . We define this:
E(P(£L(x0,S(C(e, G, w), ¥)))) = > —zlogy x
2€P(L(x0,5(C(e,Gw) 1))

which will be shortened to E(L(xq,S(C(e, GF,w),v))). (If this is unclear, see Section )
(e) Maximize the entropy w.r.t. all ” pathways”. This we will denote:

E(E(S(C(e’:‘,G:,UJ)ﬂ//))) — sup E(E(XQ,S(C(EvG:’w)71/))))
x0€S(C(e,Gr,w) )

(In case this is unclear, see Section )
(4) Therefore, the maximum entropy, using (1) and (2]) is:

Emax(e,7) = sup  sup  E(L(S(C(e, GT,w), ¥)))

we e,r S £, r,w

5.3.2. Generalized Definition of Limits. Let n € N and suppose f : A C R" — R, where A and f and Borel.

Note, lim,_,¢ f(x),limsup,_,, f(x), and liminf, o f(x) exist, when 0 is a limit of point of A. If 0is not a limit
point of A (e.g., A = N), we change these definitions to include any A. The general definition of lim,_, f(x) or
lim,_,o f(z) satisfies:

V(er > infeeanzs (€))3(8 > 0)¥(z € A) (o <lz| < 8= |f(x) - @f(x)‘ < 61) ,
the general definition of lim sup,_,, f(z) or limsup,_,, f(x) satisfies:

V(e2 > inf e gqp+ (€))3(6 > 0)V(t € ANRT) <0 <|t|<d=

sup{f(z):z € AN(c—t,c+t)} —limsup f(x)
z—0

<€2>7

V(es > infoc 4ops (€))3(8 > O)V(t € ANRT) (o <l <s= (inf{f(x) 13 € AN (c—t,c+ 1)} — Tminf f(x)‘ < 63)

and the general definition of lim inf,_,¢ f(z) or liminf, ¢ f(z) satisfies:

5.3.3. What Are We Measuring? We define {G} : r € A(A)} and {G}* : v € A(A)}, which respectively are
families of the graph for each of the bounded functions f} and f;* (SectionC). Hence, for constant ¢ and
cardinality | - |

(a) Using (2)) and (Je)) of Section[5.3.1] suppose:
IS(C(e, G, w), ¥)| =
inf {|S(C(e, G3*,w),¥")| v EN, W' € Qe o, ¥ € Ve v, E(L(S(C(e, G5*,w'),9"))) > E(L(S(C(e, G, w), ¥))) }

then (using |S(C(e, Gf,w), ¥)|) we get:
a(e,rw, ) =I[S(C(e,Gf,w),¥)|/ [S(Cle, GF,w),¥))|
(b) Also, using (2) and (Je) of Section[5.3.1] suppose:

|S(C(87G:7w)7'¢)| =
sup {}S(C(E» GZ*,UJ/),WH :v €N, W' e Qs,v: wl S IIJE,U,QM E([:(S(C(E,GZ*,UJI),@Z)/))) < E(E(S(C(&G:,w)ﬂl’)))}

then (using |S(C(e, Gy, w),¥)|) we also get
a(e,rw,) = [S(C(e, GF, w), ¥)|/ IS(C(e, Gy, w), )|
(1) Ifusinga (e,7,w,v) and « (¢, r,w, ) we haveﬂ

1 < limsuplimsup sup sup @(e,r,w,y),liminfliminf inf inf  a(e,rw,¥) < 400
e=0 100 wEQe , YEV,. 0 e=0 7100 wee  PEW, 10

then the “measure” of {G} : r € A(A)} increases at a rate superlinear to that of {G}* : v € A(A)}.

2For the definitions of the notations lim sup and liminf, see Section W
e—0 e—=0
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(2) Ifusingequations@ (e, v,w, ) anda (g, v, w, 1) (where, using@ (e, 7, w, ¥) and a (e, r, w, V), weswap “r € N”
with v € Nand G with G*) we get

1 <limsuplimsup sup sup @(e,v,w,?),liminfliminf inf inf  a(e,v,w,¥) <400
e—0 vV—00 wEQE‘U we\l’g,vyw e—0 Chdes] WGQE,U we\lls,u,w

then the “measure” of {G} : r € A(A)} increases at a rate sublinear to that of {G}* : v € A(4)}.
(3) If using equations @ (e, r, w, V), a (g, r,w, ¥), @ (e,v,w, ), and a (¢, v,w, 1), we both haveﬂ

(a) limsuplimsup sup sup al(e,r,w,t)orliminfliminf inf inf  a(e,rw,y)areequaltozero,
e=0  r—00 WwEQe YEV, ., e=0 100 wEQe YEVL 10
one or +0o0o

(b) limsuplimsup sup sup @/(g,v,w,¥)orliminfliminf inf inf  a(e,v,w,)areequaltozero,
e—0 V=00 WENRe,» YETV, 4 0 €0 v—=00 WEQ. » YEY. 4 &
one or +00

then the “measure” of {G} : r € A(A)} increases at arate linear to that of {G* : v € A(A)}.

5.3.4. Ezxample of The “Measure” of (G¥) Increasing at Rate Super-linear to that of (Gr*). Suppose, we have
function f : A — R, where A = QN [0, 1], and:

1 ze{(2s+1)/(2t): s € Z,t €Nt #0}N[0,1]
J(@) = { 0 z¢{(2s+1)/(2t):s€Z,t eN,;t#0}N][0,1] (33)
such that (Section[2.3.1)):
{47 :re A(A) =N} = ({¢/rl:c€Z,0<c<rl})ren
and
{A:ve A(A) =N} =({e/d:c€Z,deN,d<v,0 <c<v})pen
where for f : Ax - R,
fX(z) = f(z) forallz € A% (34)
and f* : A% - R
[2¥(x) = f(z) forallz € A} (35)
Hence, when {G} : r € A(A)} (Section[2.3.1)) is:
{Gire A(A) =N} = ({(, f7(2)) : v € AT}),en (36)
and {G}* v € A(A)} is:
{GT v e A(A) =N} = ({(z, [ () 12 € AT'}) e (37)

Note, the following:

Sincee > 0 and A = QN [0, 1] is countably infinite, there exists a minimum ¢ which is 1. Thus, we do not need
e — 0. Moreover, E(L(S(C(e, G, w),))) (Section step[3) is maximized by this procedure:
(1) Foreveryr € N, group (x,y) € GF into (z, f(x)), where  has an even denominator when simplified: i.e.,

Sir={(z, fr(x):xe Arn{(2s+1)/(2t) : s € Z,t € N,t #0} N[0, 1]}
then group (z,y) € G} into (z, f¥(x)), where x has an odd denominator when simplified: i.e.,
Sar = (o, f1(2)) 17 € AN (Q\ {25+ 1)/(20) : 5 €Z,t € N, ¢ £0}) 11 [0, 1]}

(2) Arrange the points in S, from least to greatest and take the 2-d Euclidean distance between each pair of
consecutive points in S; .. Since the points lie on y = 1, take the absolute difference between each pair of
consecutive 2-coordinates of Sy, and call this Dy ,.. (Note, this is similar to Section[5.3.1]step ).

(3) Repeat step (2)) for Sy ,, then call this Dy .. (Note, all pointsin S , lieony = 0.)

(4) Remove any outliers from D, = Dy ,,UDs,U{d((%52,1),(1,0))} (i.e., dis the 2-d Euclidean distance between

r!

the points (5%, 1) and (1,0)). In this case, Dy, and d((™52, 1), (1,0)) should be outliers (i.e., for any C' > 0,

rl rl

the lengths in Dy, and {d((™52, 1), (1,0))} are more than C times the interquartile range of the lengths in

r!

D, =Dy, UDy, U{d((®5,1),(1,0))} asr — oo) leaving us with D ..

r!

(5) Multiply the remaining lengths in the pathway by a constant so that they add up to one. (See P[r] of Code
for an example)
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(6) Take the entropy of the probability distribution in Step (See entropy [r] of Codefor an example.)
We can illustrate this process with the following code:
CobE 1. Illustration of step —@
(*We are wusing Mathematicax)

Clear [” *Global ‘%" ]

Alr_] := A[r] = Range[0, r!]/(r!)

(*Below 1is step *)

Si[r_] :=

S1[r] = Sort[Select[A[r], Boole[IntegerQ [Denominator[#]/2]] = 1 &]]
S2[r_] :=

S2[r] = Sort[Select[A[r], Boole[IntegerQ [Denominator|[#]/2]] = 0 &]]

(*Below is step *)
Distl[r_] := Distl[r] = Differences[S1[r]]

(*Below is step *)
Dist2[r_-] := Dist2[r] = Differences[S2[r]]

(*Below is step *)
NonOutliers[r_] :=
NonOutliers[r] = Distl[r] (*We exclude Dist2[r] since it ’s an outlier *)

(*Below 1is step 4:)
P[r_.] := P[r] = NonOutliers[r]/Total[ NonOutliers[r]]

(*Below 1is step @*)
entropy[r-] := entropy[r] = Total[-P[r] Log[2, P[r]]]

Taking Table [{r,entropy[r]l},{r,3,8}], we get:

CoDE 2. Output of Table [{r,entropy[r]},{r,3,8}]
Clear [” *Global ‘x” ]
{{{3,1}, {4,(2 Log[11])/(11 Log[2]) + (9 Log[22])/(11 Log[2])},
{5,(14 Log[59])/(59 Log[2]) + (45 Log[118])/(59 Log(2])},
{6,(44 Log[359])/(359 Log[2]) + (315 Log[718])/(359 Log[2])},
{7,(314 Log[2519])/(2519 Log[2]) + (2205 Log[5038])/(2519 Log[2])},
{8,(314 Log[20159])/(20159 Log[2]) + (19845 Log[40318])/(20159 Log[2])}}}

and note when:
(1) e(r)y=(r)/2 -1
(2) {b(4) > 9, b(5) s 45, b(6) — 315, b(7) > 2205, b(8) — 19845}
(3) a(r) +b(r) = c(r)
the output of Code[2]can be defined:
alr) oga(c(r)) | b{r)1og(2e(r))) _ a(r)log(e(r) + b(r) og(2c(r))
e(r) e(r) e(r)
Thus, since a(r) = ¢(r) = b(r) = (r1)/2 — 1 — b(r):
alr) oga(cr)) + b{r) og(2e(r)) _
e(r)
(r!/2 =1 —b(r))logy(c(r)) + b(r) logy(2¢(r)) _
e(r)
(r!/2)log,(c(r)) —logy(c(r)) — b(r) logy (1) + b(r) logy (c(r)) + b(r) logy(2) _
c(r)
(r!/2)logy(c(r)) —logy(c(r)) +b(r)
e(r)
(r!/2 —1)logy(c(r)) +b(r)
c(r)
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(r!/2 — 1) logy(r!/2 — 1) + b(r)

/2 -1 - (44)
b(r)
1 172 —1 —_— = 4
oms(/2 = 1)+ (45)
and lim, _, o b(r)/c(r) = 1 (we need help proving this):

b(r)

~ | —
21 log,(r!/2 —1)+1 (46)
rl/2 —1) +logy(2) = (47)
2(r!/2 = 1)) (48)
(49)

Hence, entropy [r] is the same as:

E(L(S(C(1, G, w),9))) ~ logy(r!) (50)
Now, repeat Code[T]with (Section[2.3.1)):

{Gyve A(A) =N} = ({(z, f;"(2) rx € Ay := ({e/d:c€ Z,d € N,d <v,0 < ¢ <v})uent)yen

CobE 3. Ilustration of step (I)-(6) on {G3* : v € A(A) := N}

(*We are using Mathematicax)
Clear [”*Global ‘%7 ]
Alv_] = Alv] =
DeleteDuplicates [ Flatten [Table [Range[0, t]/t, {t, 1, v}]]]

(*Below 1is step 1%)

S1[v_.] :=
S1[v] = Sort[Select[A[v], Boole[IntegerQ [Denominator|[#]/2]] = 1 &]]
S2[v_] =
S2[v] = Sort[Select[A[v], Boole[IntegerQ[Denominator[#]/2]] = 0 &]]

(#*Below 1is step 2%)
Distl[v_] := Distl[v]

Differences [S1[v]]

(*Below 1is step 38%)
Dist2[v_] := Dist2[v] = Differences [S2[v]]

(*Below 1is step 4%*)
NonOutliers [v_] :=
NonOutliers [v] = Join[Distl[v], Dist2[v]] (*There are mno outliers*)

(+*Below is step 5%)
P[v.] := P[v] = NonOutliers[v]/Total[ NonOutliers[v]]

(*Below is step 6%)
entropy[v-] := entropy[v] = N[Total[-P[v] Log[2, P[v]]]]

Using this post [I8], we assume an approximation of Table [entropy[v],{v,3,Infinity}] or
E(L(S(C(1, Gy W), ")) is:
E(L(S(C(1, Gy, w'),1))) ~ 2logy(v) + 1 — logy(3) (51)
Thus, using Section|5.3.3) (a]) and Section|5.3.3| (1)), take |S(C(e, G5*, w'), ") = Y31 (M) ~ 202 (where
¢ is Euler’s Totient function) to compute the following:
[S(C(e, G}, w), )| = (52)
inf {|S(C(e, G}, w"), ¢")| 1 v €N, ' € Qepo, ¥ € Veyu,0, B(L(S(C(e, G}, w'),4))) 2 E(L(S(C(e, Gr,w), ¥))) } =

v

i 3
int {;f ir €N, W € Qe ¥ € Ve iy, 2logy(v) + 1 — log,(3m) > 1og2(r;)} =

where:



16 BHARATH KRISHNAN

(1) Foreveryr € N, wefind av € N, where 2log,(v) + 1 — log,(37) > log,(r!), but the absolute value of
(2log,(v) + 1 — log,(37)) — log, (r!) is minimized. In other words, for every r € N, we want v € N where:

2logy(v) + 1 — logy(3m) > log,(r!) (53)
221082(v) > Jog, (1) — 1 + log,(37) (54)
(2log2(v))2 > 210g2(r!)71+10g2(37r) (55)
,U2 Z (210g2(r!)2log2(37\')) /2 (56)
|
> r.(;’nr) (57)
|
3 3 3mr! ?
mr.

Finally, since |S(C(1, G}, w),v)| = rl, we wish to provdﬂ

1 < limsuplimsup sup sup a(e,r,w,9) < +oo
e—0 r—=00 wENe » PEV,

with Section[5.3.3 crit. [T}

IS(C(1, Gt w), ¥)|

lim sup limsup sup sup al(g,r,w,®) =limsup sup sup 60
e—0 r—=00 WENe r YEV: W ( ) r—=00 weQe rYPEVe 1w \S(C(l,GLW),WN ( )
2
2(v)
2 2
= Jim oy

where, from Mathematica, we get the limit in Equation|61}is greater than one:

CODE 4. Limit of Equation|61]
N[Limit [((3/Pi"2) (Ceiling[Sqrt[(3 Pi r!)/2]])"2)/(r!), r —> Infinity]]

(*The output is 1.43239x)

Also, using Sectlon“@ and Sectlonn. ), take |S(C(e, G3*,w'), ¢)| = Y31 ¢(M) =~ Zv? (where ¢ is

Euler’s Totient function) computing the following:
|S(C(e, Gy, w), ¥)| = (62)
sup {|S(C(e, G1",w'), )| 1 v €N, ' € Qe vy ¥ € Ve iy 0, BL(S(C(e, G, w'),9")) < B(L(S(C(e, G, w), ¥))) } =

3
sup{ﬁv v EN, W € Qey, ¥ €W, 40, 2logy(v) + 1 —logy(3m) < logz(r!)} =

where:

(1) Foreveryr € N, we find av € N, where 2log,(r) + 1 — log,(37) < log,(r!), but the absolute value
of log, (r!) — (2log,(v) + 1 — log,(3)) is minimized. In other words, for every r € N, we want v € N

3 For a definition of the notation Iim sup, see Section

e—0



AVERAGING HIGHLY DISCONTINUOUS FUNCTIONS 17

where:

2log,(v) + 1 — logy(3m) < logy(r!) (63)
2log,(v) < logy(r!) — 1 + log,(3m) (64)
(65)
(66)

(2log2(v))2 < 210g2(r!)71+10g2(37r)

(1})2 < (210g2(r!)210g2(3ﬂ-)) /2
v < /r!(;’m) (67)
_ 3!
v=
2
= Q\/?’Z'D ~IS(C(1L.GLw) ) (69)

Finally, since |S(C(1, G}, w), )| = r!l, we wish to proveﬂ

—~
D
0]

~—

1 <liminfliminf inf  inf a(e,7rw,9) < +oo
e—0 r—=00 WEN. » PEV, 1w

with Section[5.3.3 crit. [I}
|S(C(1, Gy, w), )]

lmjpfliminf faf |t e@nev)=lmil B & 500 6w, (70)
2
+()
w2 2

where, from Mathematica, we get the limit is greater than one:

CODE 5. Limit of Equation[71]

Clear [”*Global ‘%7 ]
N[Limit [((3/Pi"2) (Floor[Sqrt[(3 Pi r!)/2]])"2)/(r!), r —> Infinity]]

(* Output is 1.48239x)
Hence, since the limits in Equationand Equationare greater than one and less than +o0: i.e. ,E|

1 < liminfliminf inf inf  a(e,r,w,¢) =limsuplimsup sup sup a@l(e,r,w,¥) < 400 (72)
e=0  r—0o0 weQe PEV, 1w e—0 r—00 W€ PEV. .,

then the “measure” of {G} : r € A(A) := N} increases at a rate superlinear to that of {G}* : v € A(A4) := N}

(i.e.,crit. .

5.3.5. Ezample of The “Measure” from {G} : r € A(A)} Increasing at a Rate Sub-Linear to that of
{G* :v e A(A)}. Using our previous example, we can use the following theorem:

Theorem 7. If the “measure” of {G} : v € A(A)} increases at a rate superlinear to that of {G:* : v € A(A)},
then the “measure” of {G%* : v € A(A)} increases at a rate sublinear to that of {Gy :r € A(A)}

Hence, in our definition of super-linear (Section crit.[I), swap G7 for G3* and r € Nfor v € N regarding
a (e, r,w,v)and a (e, r,w, ) (ie., @ (e, v,w,¥) and a (¢, v,w, 1)) and notice Theoremlﬂis true Whenﬂ

1 < limsuplimsup sup sup @/(e,v,w,?), liminfliminf inf inf  a(e,v,w, ) < 4oo
e—=0  v—00 weN L, PEV, , €0 v—=00 WENe » YEVe p,w

4 For a definition of the notation lim i(r)lf, see Section [5.3.2
E—>

5 For the definitions of the notations lim sup and lim i(r)lf7 see Section
e—

e—0
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5.3.6. Ezample of The “Measure” from {G} :r € A(A)} Increasing at a Rate Linear to that of {G)* : v €

A(A)}. Suppose, we have function f : A — R, where A = QN [0, 1], and:

fz) = 1 ze{(2s+1)/(2t):s€Z,t €Nt #0}N[0,1]
VTN0 2 {254+ 1)/(20) s € Z,t €Nt £0}N[0,1]

such that (Section|2.3.1)):
{4y :re A(A) =N} = ({¢/r!:c€Z,0<c<rl})ren

and

{A7 ive A(4) =N} = ({¢/())*:c€N,1 < ¢ < (v1)*}ven

where for f} : AX — R,
fX(x) = f(z) foralla € A%

and f* : A - R
[2(x) = f(z) forallz € A}

Hence, when {G} : r € A(A)} (Section[2.3.1)) is:

{Grre A(A) =N} = ({(z, f7(2)) : € AT}), ey
and {G}* : v € A(A)}is:

{G v e A(A) =N} = ({(2, f77(2)) : © € AT} yen

We know, using Equation 50}

E(‘C(S(C(la G:a W), ¢))) ~ 10g2(7"! - 2) ~ IOgQ(T!)

Also, using Section[5.3.4]steps[I}f6lon {G%* : v € A(A) := N}:

CoDE 6. Mlustration of step (I))-(€]) on {G3* : v € A(A) := N}

(*We are wusing Mathematicax*)

Clear [”xGlobal ‘%7 ]
A[v-] := A[v] = Range[0, 7 (v1)]/(7 (v!))

(*Below 1is step 1%)

Si[v-] =
S1[v] = Sort[Select [A[v], Boole[IntegerQ [Denominator[#]/2]] = 1 &]]
S2([v.] =
S2[v] = Sort[Select[A[v], Boole[IntegerQ[Denominator[#]/2]] = 0 &]]

(#*Below 1is step 2%)
Distl[v_] := Distl[v] = Differences [S1[v]]

(*Below 1is step 8%)
Dist2[v_] := Dist2[v] = Differences [S2[v]]

(*Below 1is step 4%*)
NonOutliers[v_] :=

NonOutliers [v] = Distl[v] (*Dist2[v] is an outlierx)

(*Below is step 5%)
P[v_.] := P[v] = NonOutliers[v]/Total[ NonOutliers [v]]

(+*Below is step 6%)
entropy[v-] := entropy[v] = N[Total[-P[v] Log[2, P[v]]]]
T = Table[{v,entropy[v]},{v,3,6}]

where the output is

(73)
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CODE 7. Output of Code|§|

{{3,(8 Log[17])/(17 Log[2]) + (9 Log([34])/(17 Log[2])},
{4,(8 Log[287])/(287 Log[2]) + (279 Log[574])/(287 Log[2])},
{5,(224 Log[7199])/(7199 Log([2]) + (6975 Log[14398])/(7199 Log[2])},
{6,(2024 Log[259199])/(259199 Log[2]) + (257175 Log[518398])/(259199 Log[2])}}

Note, when:

(1) c(v) = (1)?%/2 -1

(2) {b(4) — 9, b(5) — 279, b(6) — 6975, b(7) — 257175, b(8) — 19845}
(3) a(v) +b(v) = c(v)

Code[flcan be defined:
a(v)logy(c(v)) | b(v)log(2¢(v)) _ a(v)logy(c(v)) + b(v)log(2¢(v)) (79)
c(v) c(v) c(v)
Thus, since a(v) = c¢(v) — b(v) = (v1)2/2 — 1 — b(v):
a(v) logy(c(v)) + b(v) log(2¢(v)) (80)
c(v)
((v)?/2 — 1 — b(v)) logy(c(v)) + b(v) log, (2¢(v)) (81)
c(v)
((v1)?/2)logy (c(v)) — logy(c(v)) — b(v) logy(v) + b(v) logy(c(v)) + b(v) logy(2) (82)
c(v)
((v1)%/2) log, (c(v)) — logy(c(v)) +b(v) _ (83)
c(v
((v)?/2 — 1) log,(c(v)) +b(v) _
c(v) B (84)
v1)?2/2 — 1) logy((v!)?/2 — 1) + b(v
(P2 Dlogy( 21 1) _ -
log, ((v1)?/2 — 1) + O = (86)
(vh2/2 -1
and lim, o b(v)/c(v) = 1 (this is proven in [19]):
gy (0172 1) + (ol ~ loma(/2 1)+ 1 (57)
logy((v!)?/2 = 1) +logy(2) = (83)
logy ((v1)? = 2)) ~ (89)
logy((v)?) = (90)
2log, (v!) (91)
Then, entropy [r] is the same as:
E(L(S(C(1, G w), ¢))) ~ (92)
2log,(v!) (93)

Therefore, using Section (b) and Section (3R, take |S(C(e, G+, w'),¢")| = (v1)? to compute the
following:

|S(C(e, Gy, w), ¥)| = (94)
sup{‘S(C(E,G** W’) ¢l)| tvEeN, W' e Qe v, wl € Ve v,w, BE(L(S(C(e, G** w ) 7#’ ))) < E(L(S(C(e, G w),’t/))))} =

%up{ o) ir €N, w € Qe ¥ E Ve 0, 2log2(v')<log2(7"}

where:
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(1) Foreveryr € N,wefindav € N, where2log,(v!) < log,(r!), but theabsolute value oflog, (r!) —2 log, (v!)
is minimized. In other words, for every r € N, we want v € N where:

To solve for v, we try the following code:

2log,y (v!) <logy(r!)
22 log, (v!) < 210g2(7’!)
(210g2(v1))2 S rl
()% < 7!

()2 = 7!

CobE 8. Code for v in Equation

(*We are wusing Mathematica*)
Clear [” Global ‘%7 ]

T1 = Table]
{sol[r_] sol[r] = Reduce[v > 0 &&
vsolve = Max[v /. Solve[sol[r], {v},
(¥ Largest v that solves inequality
, N[(vsolve!)"2/(r!)]}, {r, 3, 40}];

Tablevsolve
Table[{T1[[r — 3 + 1,
40}] (*Takes

211, r}, {r, 3,

loweralphr
Table[{r, T1[[r — 3 + 1,
40}] (* Takes largest

ListPlot [loweralphr]
a lower bound of zero.x)

411}, Ar,

3,

Note, the output is:

(*Graph points of loweralphr.

(v 2) <= 11, v,
Integers]],

(v!)"2<=r for every r x)

largest v—wvalues for every r in r!x)

Notice ,

CODE9.(hnput&medeE

Clear [” Global ‘%7 ]

(* Output of Tablevsolvex)

{{2, 3}, {2, 4}. {3, 5}. {4, 6}, {4,
{8, 13}, {8, 14}, {9, 15}, {10, 16},
{13, 22}, {14, 23}, {14, 24}, {15,
{18, 30}, {18, 31}, {19, 32}, {20,
{23, 39}, {24, 40}}

7},

25},
33},

(* Output of loweralphr*)

{{3, 0.666667}, {4, 0.166667},

{10, 0.142857}, {11,

{16, 0.629371}, {17, 0.0370218}, {18, 0

{22, 0.034498}, {23, 0.293983}, {24,
0
0
0

{5, 0.3},
0.636364}, {12,

{28, 0.41495}, {29, 0.0143086}, {30,
{34, 0.0200486}, {35, 0.252613}, {36, 0
{39, 0.0327645}, {40, 0.471809}}

{10,

0.0530303},
248869},
0.0122493},
0.154533},

.00701702},

{5, 8},
17},
{15,
{20,

{5, 9}, {6, 10},
{11, 18}, {11,
26}, {16, 27}, {17,
34}, {21, 35}, {21,

{6, 0.8},

{7,
{13,

{19,

0.114286},
0.261072},
0.0130984},
{25, 0.110244},
{31, 0.00498494},
{37,

193,

0.0917902},

Integers],

largest v—wvalues and corresponding r valuex)

{7,

28},
36},

(s,

{14,
{20,

{26,
(32,

11},
{12,

0.357143},

{38,

the graph has

{7, 12},
20}, {13,
{17, 29},
{22, 37},

{9,
0.018648},
0.0943082},
0.00424014},
0.0562364},

{22,

{15,

21},

38},

0.0396825},

{21,

0.100699},

0.758956},

{27,0.0402028},

{33,

0.00241553},

0.681653},
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FIGURE 1. Plot of loweralphr
08l .

.
06

04r °

02

Finally, since the lower bound of loweralphr is zero, we have shownﬁ

lim inf lim inf inf inf  a(erwyY)=0 (100)

e—0 r—=00 wWEN » YPEV, 1,
Next, using Section[5.3.3| (b)) and Section[5.3.3|(Fp), take |S(C(e, Gy, w’),¢')| = rl and swap r € Nand {G} : r €
A(A) := N} witho € Nand {G}* : v € A(A) := N}, to compute the following:
[S(C(e, Gy w), ¥)| = (101)
inf {|S(C(e, G, w"),¢")| i 7 €N, w' € Qe ¥ € Ve pw, B(L(S(C(g, G, w'),9"))) > E(L(S(C(e, GyF,w), ¥))} =
inf {rl:r €N, w' €Qcr, ¥ € Ve, logy(r!) > 2logy(v))} =
where:

(1) Foreveryv € N,wefindar € N, wherelog,(r!) < 2log,(v!), but the absolute value of2 log, (v!) —log, (r!)
is minimized. In other words, for every v € N, we want r € N where:

log, (r!) < 2log,(v!) (102)
9logs (1) < 2logy(v!) (103)
rl < (21082(vD)2 (104)
rl < (vh)? (105)
rl = (v!)? (106)

To solve r, we try the following code:
CoDE 10. Code forrin Equation

(¥We are wusing Mathematicax*)

Clear [” Global ‘%7 ]

T2 = Table]
{sol[v_.] := sol[v] = Reduce[v > 0 && r! <= (v!)"2, r, Integers],
rsolve = Max[r /. Solve[sol[v], {r}, Integers]],
(* Largest r that solves inequality (rl)<=(v!)"2 for every v x)
, N[(rsolve)/((v1)"2)]}, {v, 3, 40}];

Tablersolve =
Table[{T2[[v — 3 + 1, 2]], v}, {v, 3,
40}] (#Takes largest r—wvalues for every v in (v!) 2x)

loweralphv =
Table[{v, T2[[v — 3 + 1, 4]]}, {v, 3,

40}] (* Takes largest largest r wvalues and corresponding v valuex)

ListPlot [loweralphv] (¥ Graph points of loweralphv. Notice, the graph
has a lower bound of zerox)

6 For a definition of the notation lim i(I)lf, see Section W
E—r



22 BHARATH KRISHNAN

Note, the output is:

CobpE 11. Output for Code

Clear [” Global ‘%7 ]
(* Owutput of Tablersolve *)

({4, 3}, {5, 4}, {7, 5}, {9, 6}, {10, 7}, {12, 8}, {14, 9}, {15, 10}, {17, 11}, {19, 12},
{20, 13}, {22, 14}, {24, 15}, {26, 16}, {27, 17}, {29, 18}, {31, 19}, {32, 20}, {34, 21},
{36, 22}, {38, 23}, {39, 24}, {41, 25}, {43, 26}, {44, 27}, {46, 28}, {48, 29}, {50, 30},
{51, 31}, {53, 32}, {55, 33}, {57, 34}, {58, 35}, {60, 36}, {62, 37}, {64, 38}, {65, 39},
{67, 40}}
(* Output of loweralphv+*)
{{3, 0.666667}, {4, 0.166667}, {5, 0.3}, {6, 0.8}, {7, 0.114286}, {8, 0.357143}, {9, 0.0396825},
{10, 0.142857}, {11, 0.636364}, {12, 0.0530303}, {13, 0.261072}, {14, 0.018648}, {15, 0.100699},
{16, 0.629371}, {17, 0.0370218}, {18, 0.248869}, {19, 0.0130984}, {20, 0.0943082}, {21, 0.758956},
{22, 0.034498}, {23, 0.293983}, {24, 0.0122493}, {25, 0.110244}, {26, 0.00424014}, {27,0.0402028},
{28, 0.41495}, {29, 0.0143086}, {30, 0.154533}, {31, 0.00498494}, {32, 0.0562364}, {33, 0.681653},
{34, 0.0200486}, {35, 0.252613}, {36, 0.00701702}, {37, 0.0917902}, {38, 0.00241553},
{39, 0.0327645}, {40, 0.471809}}
FIGURE 2. Plot of loweralphv

08} .

06

0.4f . .

0.21 N : ‘ - -

10 20 30 40

since the lower bound of loweralphv is zero, we have shownﬂ

liminfliminf inf  inf a(e,v,w,9) =0 (107)

e—=0 1200 WEQ L YEV. 4 0
Hence, using Equation and since bothﬁ

sup @ (g,7,w,)orliminfliminf inf  inf

1) Ii li
(1) limsuplimsup sup minf inf  nf o

e—0 =00 WwENe » YEV, 1w e—=0
or +00

sup @(e,v,w,)orliminfliminf inf inf

2) limsuplims S
( ) 1 up 1 up up V—> 00 WGQEUQZ)E\I’EUW

e=0  v—00 wEQ L YEUL ., =0
or +o00

the “measure” of {G} : r € A(A)} increases at a rate linear to that of {G}* : v € A(A)}.

5.4. Defining The Actual Rate of Expansion of a family of Bounded Sets.

5.4.1. Definition of Actual Rate of Expansion of a family of Bounded Sets. Suppose:

(1) {Gy :r € A(A)}is a family of the graph of each f; (Section[3.1]C)
2) C'is a reference point in R™*!

(2)
(3) Q R e R+
(4) @

4 (g1, qnt+1) and R = (71, - -, ny1), where:
Q—R=(q1 =71, qnt1 — Tny1)
7 For a definition of the notation lim inf, see Section [5.3.2

e—0

8 For the definitions of the notations hm 1nf and lim sup, see Section

e—0

a (g, r,w,1) are equal to zero, one

a (e,v,w, 1) are equal to zero, one
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(5) [1Qllnt1 =/ai + -+ + ¢y and [[Rl[npr = /ri + -+ 77044

(6) C-Gr={C—-y:yeG}

(7) dimg(+) be the Hausdorff dimension

(8) HImu()(.) is the Hausdorff measure in its dimension on the Borel o-algebra
For any r € N, take the (n + 1)-dimensional Euclidean distance between a reference point C' € R"*! and each
point in G}:

G(C,G7) ={lIC = Yllnt1 : y € G}
then average G(C, G}):
1

AVg(g(C’ G:)) = HdimH(C*G:)(C — G*)

/ ||(3;‘17- ’ '7xn+1)||n+1 d,HdimH(C_G:)
C-Gx

where the actual rate of expansion of {G} : r € A(A 1sE|
— A C,G* —A C,G:
£(c.c) - vg(G( r+h))h vg(G( ) (108)
o

If £(C, G¥) is undefined, replace the Hausdorff measure H4™#(C=G7) with the generalized Hausdorff measure
%0508 [11, p.26-33]

5.4.2. Example. Suppose, we have f : A — R, where A = Rand f(z) = z, such that {A%:r € A(A) :==R*} =
{[=r,7] : 7 € RT}andfor f} : Ax — R:

fr(x) = f(z)forallz € A
Hence, when {G} : r € A(A)} (Section[2.3.1]) is:
{G: 7€ A(A) :=R"} = {{(z,2) 1z € [-r,r]} : 7 € RT}
such that C' = (0, 0), note:

1
HdimH(C—G;) (C _ G:)

— =g | el d = Gince o = fe) =) (110)
1 " 2 2

:m/_r Vai + ot doy (111)

W—(—r))?l— - / Wt (112)

NCOIERE / \/gdﬂc1 (113)

Avg(6(C,GY)) =

/c o (21, w2)||2 dH1(E=CD) (109)

V(22 + (2r)?
\1[ f|x1| dz, (114)
- (ﬁmgnmxmz ) (115
_ NléT <\fsign(r)r2 - ‘fsign(r)(rf) (116)
- (f s *f) (117)

= 2\}% (\/ir ) (118)

9 For a definition of the notation FH%), see Section
E—r
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_L (119)
(120)

and the actual rate of expansion isﬂ

— Avg(G(C,Gryp)) — Ave(G(C,GY))

E(C,GY) zillir% - = (121)
—
— i(r+h)-ir
— 3 2
BT 12

Since h € R, hence Equation[122|is the same as the limit definition of the derivative of 7. Thus,

£(C,GF) = dii (;r) —1/2

5.5. Defining Equivalent and Non-Equivalent families of Bounded Functions. Letn € Nand suppose
f+ACR" — Risafunction, where A and f is Borel:

(1) {fr : 7 € A(A)} (Section[2.3.1)) is a family of functions, where { A, : 7 € A(A)} is a family of bounded
sets and f : A, — Risabounded function

(2) {gv : v € A(A)} (Section[2.3.1) is a family of functions, where { B, : v € A(A)} is a family of bounded
sets and g, : B, — Ris a bounded function

(3) dimg(+) is the Hausdorff dimension

(4) HYmu() (1) is the Hausdorff measure in its dimension on the Borel o-algebra

Definition 1 (Equivelant families of Bounded Functions). If {f, : r € A(A)} (Section and
{gv : v € A(A)} are equivalent, then for all f € RA, where (f., A.), (gv, By) — (f, A) (Section :

E[f.] =Elg,] (Section[2.3.3)
The following definition is a shortcut of Deﬁnition

Definition 2 (Equivelant families of Bounded Functions (Analytical Version)). The families of
bounded functions {f, : r € A(A)} (Section and {g, : v € A(A)} are equivalent, if there exists
N’ € A(A), where for all r > N', there exists v € A(A), such that:

HdimH(AT)({(xlv e 7x77«) : (m17 e ,xn) € AT U B’LM fT(xla e 7:E’"«) # gv(xl, e ,l’n)}) =0

and for all v > N', there exists v € A(A), such that:
H B ([(21,- - @a) : (21,7, @n) € ArU By, fr(@1, -+ ,2n) # go(z1,++ ,20)}) =0

Since this definition is over-sophisticated, consider the following example to find a simpler definition:

5.5.1. Ezxample of Equivalent Families of Bounded Functions. Suppose:

e f:R — Risafunctionand f(x) =«
o {fr:7 € AR) := R*} (Section[2.3.1)) is a family, where {A, : r € A(R) := R*} = {[~r — 2,7 + 2] :
r € RT}and f, : A, — Risa function, such that f,.(x) = f(z) forallz € A,
e {9, : v € A(R) := R*} (Section[2.3.1)) is a family, where {B, : v € A(R) := R*} = {[-v,2] U (QN
[-v—1,v+1]):veRt}and g, : B, — Risa function, such that g,(z) = f(z) forallz € B,
Now, suppose N’ = 3. Thus, using Definition[2]and the fact that f.(z) = f(z) forallz € A, and g,(z) = f(z)
for all z € B, we prove:

(1) Forallr > N’ = 3, thereexistsab < v =:r + 2 € R, where:

M) (02 0 € AU B, fole) # o)) = HO™AD(A,AB,) =0 (123)

10 For a definition of the notation Fnb, see Section W
E—r
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which is proven with the following;:
In eq. since A, = [—r — 2,r 4 2] is a 1-d interval, dimp (4,) = 1. Hence,

HAmn(A) (4, AB,) = (124)
H([-r — 2,7+ 2JA([-v,v] U (QN[—v — 1,v +1]))) = (125)
H' ([-r—2,r +2JA([—(r+2),(r +2)]U(@QN[—(r+2) = 1,(r +2) + 1)) = (126)
HY ([—r = 2,7+ 2JA([—(r +2),(r +2)]U(QN[—r — 3,7+ 3])) = (127)
H(@Q@N(r+2,7+3)u(@N[-r—3,r—2])) =0 (128)
(2) Forallv > N’ = 3, thereexistsal < v — 2 =: r € RT, where:
HEE) ({22 0 € A, UB,, fr(2) # go(2)}) = HE™ ) (4,AB,) =0 (129)
which is proven with the following;:

In eq. since dimy (B,) = dimg([—v,v]U(QN[-v —1,v + 1])) = 1:
HdimH(Bv)(A AB,) = (130)
H=r = 2,7 + 2JA([~v,v] U (QN [~v — 1,v +1]))) = (131)
H ([~ (v —2) -2, (v—2)—|—2]A([—v,v]U(Qﬂ[—v—l,v—l—l])) = (132)
H=v,v]A([~v,0] U (QN[-v — 1,0+ 1)) = (133)
HY(QN[-v—1,-v])U(QN[v,v+1])) =0 (134)

Since Section[5.5.1] crit. () and (2) is true, using Definition[2] we have shown {4, : r € A(R) := R*} =
{[-r—2,7+2]:7 € Rf}and {B, : v € AR) := R*} = {[-v,0]U(QN[-v—1,v+1]):v € RT} are
equivalent.

From the examples in Section[5.5.1] we can simplify Definition 2}

Definition 3 (Definition of Equivalent Families of Bounded Functions (Simplified)). Let n € N
and suppose f: A CR™ = R is a function. Suppose f.: A, = R and g, : B, — R are bounded functions,
such that f.(x) = f(x) for all x € A, and g,(x) = f(x) for all x € B,.

The families of bounded functions {f, : v € A(A)} and {g, : v € A(A)} are equivalent, if there exists
N’ € A(A), where for allr > N', there exists v € A(A), such that:

HAmA)(AAB,) =0
and for all v > N', there exists v € A(A), such that:
HAmi(Bo)(A,AB,) =0
Note 8 (The Validity of The Leading Question in Section Using Equivalent Families of

Bounded Functions). In the Leading question (Section , we want all f € B (Section .A) such that
for allr,v e N and f.,9, € B, fr and g, are equivalent (Deﬁm'tion @ and@

Note that when {f,. : € A(A)} (Section[2.3.1) and {g, : v € A(A)} are equivalent, there does not exist a
f € RA, where (f,, A,), (gu, By) — A (Section[2.3.2)) and E[f,] # E[g,] (Section[2.3.3). The negation of the

former statement is the definition of non-equivalent families of bounded sets in Theorem[I] However, we take the
negation of Definition[2]

5.5.2. Definition of Non-FEquivalent families of Bounded Functions.

Definition 4 (Non-Equivalent families of Bounded Sets). If {f.:r € A(A)} and {g, : v € A(A)} are
non-equivalent, there exists a f € R4, where (fr, A,), (9o, By) — (f, A) (Section :

E[f,] # Elg,] (Section[2.3.3)

Definition 5 (Non-Equivalent families of Bounded Sets (Analytical Version)). The families of sets
{fr :r e A(A)} and {g, : v € A(A)} are non-equivalent, if there exists N' € A(A), where for all r > N’,
there is either a v € A(A), such that:

HdimH(AT)({(‘rlv"' 7:1:71) : (xh”' 7:1:”7‘) € AT‘ UBlH fT‘(xly"' 7x“) 76 gv(xl,"' ,.’Iln)}) # 0
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or for all v > N', there exists a r € A(A), such that:
HdimH(BU)({(xlv' te 73:") : (3:17 e ,Ztn) S A?" ) BU7 fT(xh' o 73:71) 7é gv(xh e ,Z’n)}) 7é 0

Therefore, consider the following;:

5.5.3. Example 1 of Non-Equivalent Families of Bounded Sets. Suppose:
e f:R — Risafunctionand f(z) ==z
o {fr:1r € A(A) :== RT} (Section[2.3.1)) is a family, where {A, : r € A(A)} = {[-r,r] : r € RT} and
fr + Ar — Risafunction, such that f.(z) = f(x) forallz € A,
o (gy)ren is afamily (Section|2.3.1)), where {B, : v € AR) := R*} = {[~v,v] :v € RT}and g, : B, = R
is a function, such that g, (z) = = + (1/v) sin(x)
Now, suppose N := 1. Thus, using def. [5] we prove:
(1) Forallr > N’ =1, thereexistsal < r =: v € R", where:

a4 (0 0 € A, U B, fr(z) # go(2)}) # 0

which is proven using the following;:
Since A, = [—r, 7] is a 1-d interval, dimg (A4, ) = 1. Therefore:

HUm A ({32 € A, UB,, f(z) # g,(2)}) = (135)
H {z:2 € [-r,r]U[-v,v], £ (1/v)sin(z)}) = (136)
H {z:z € [-r,r]U[-r7], z# (1/r)sin(z)}) = (137)

H {x#tr:tcZyn[—rr]) = (138)
£0 (139)

Since Section[5.5.3|crit. (L) is true, using Definition[f] we have shown {f, : 7 € A(A)} and {g, : v € A(A)} are
non-equivalent.

5.5.4. Ezample 2 of Non-Equivalent families of Bounded Sets. Suppose:
e f:R — Risafunctionand f(z) ==«
o {f.:r e A(A)}isafamily, where {A, : r € A(A) =R} ={[-r,r]:r€RT}and f, : A, - Risa
function, such that f,.(z) = f(z) forallz € A,
® (gy)ren is afamily, where {B, : v € A(R) := R*} = {[-2v,2v] : v € R*} and g, : B, — Risafunction,
such that g,(x) = f(z) forallz € B,
Now, suppose N := 1. Thus, using def. [5land the fact that f.(z) = f(z) forallz € A, and g,(z) = f(z) for all
r € B,, we prove:

orallv > = 1,thereexistsad <2v+1=:r € , where:
1) For all N’ =1,th i 3<2 1 R*, wh
HAmu(Bo) ({2 2 € AU By, fr(z) # go(x)}) = HIuB) (4 AB,) # 0

which is proven using the following:
Since B, = [—2v, 2v] is a 1-d interval, dimg (B, ) = 1. Therefore:

HAimu(Bo) (4 AB,) = (140)

H ([~ (20 + 1), 20 + 1]A[—2v,20]) = (141)
H'([—2v — 1,20 + 1]A[-2v,20]) = (142)
HY ([—20 — 1,20 + 1]A[-2v,20]) = (143)
HY ([~20 — 1, —20] U [20,20 + 1]) = (144)
1+1+#0 (145)

Since Section crit. () is true, using Definition 5| we have shown {f. : 7 € R*} and {g, : v € R*} are

non-equivalent.

5.6. Reminder. See if Section[3.1]is easier to understand.
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6. ATTEMPT AT ANSWERING THE APPROACH OF SECTION [2.5.1]

6.1. Choice Function. Suppose we define the following:
(1) Letn € Nand suppose f : A C R is a function, where A and f are Borel
(2) If B € B(R"™) (Section|2.3.4) is an arbitrary set, where for all+ € N, A* € Band 8 C B(A}) (Section
2.3.4), fr € Bsatisfies (1), ), (), [@) and (5) of the leading question in Section[3.]]
(3) Forallv e N, Ax* € B(R™) \ Band fi* € B(A*) U (B(A4AX) \ %)

)

(4) {Gr:r e A(A)} = {graph(f}) : r € A(A)} (Section|2.3.1) is the family of the graph of each f*
(5) {Gr*:v e A(A)} = {graph(f;*) : v € A(A)} (Section|2.3.1)) is the family of the graph of each f}*

Further note, from Section (), if we take:
|S(C(e, GF,w), ¥)| = (146)
inf {|S(C(e, G3*,w"), )| : v EN, W' € Qe v, ¥ € Ve yw, B(L(S(C(e, G, w'),¢))) > E(L(S(C(e, G, w), %)) }

and from Section (b)), we take:
IS(C(e, G, @), ¥)| = (147)
sup {|S(C(e, G1*, W), ¥')| v €N, w' € Qew, ¥’ € Ve w, E(L(S(C(e, G3*,w"),9"))) < E(L(S(C(e, Gr,w),¥))) }

Then, Section (), Equation and Equation[147is:

sup  sup [S(C(e,Gr,w), ¥)| = |S'(¢,G7)| = |5 (148)
WEQE,T we‘ljs,r,w

sup sup ‘S(C(E’ G:7w)7w)‘ = ‘SI(E’ G:)l = W (149)
UJEQE,er‘I’a,r,w

sup  sup [S(C(e,Gr,w), ¥)| = |S'(¢,G7)| = |5 (150)

WEQe » YEV. 1

6.2. Approach. We manipulate the definitions of Section (fa)) and Section () to solve (1), ), (3).
and () of the leading question in Section

6.3. Potential Answer.

6.3.1. Preliminaries (Definition of T ). Suppose {G} : r € A(A)} is the family of the graph on each function f
(Section|2.3.2)). Then, whenever

e The average of G for every r € Nis:

1 . "
Avg(GF) / (21, - - Tnyr) dH (G (151)

~ HEmE(G) Je
e d(P,Q) is the (n + 1)-dimensional Euclidean distance between points P, Q € R*1
e The difference of point X = (21, - -, xpy1) and Y = (y1,- - -, Ynt1) is:

X =Y =(@1—-y1,T2 Y2, ", Tnt1 — Yn+1)

We want an ezplicit injective & : R™ — R, where r, v € N, such that:
(1) Ifd(Avg(Gy),C) < d(Avg(Gy*), C), then F (Avg(Gy) — C) < F (Avg(Gy*) — C)
(2) Ifd(Avg(Gy),C) > d(Avg(Gr*),C), then F(Avg(Gr) — C) > F(Avg(Gyr) — C)
(3) It d(Ave(GE), C) = d(Ave(G3*), C), then Z (Avg(Gr) — C) # F(Avg(GE*) — )
where we define:
T(C,Gr) = 7 (Avg(Gr) =€) (152)

We explain the motivd™]of the definition of T after defining the preliminary choice function in Section and
the choice function in Theorem [0l

6.3.2. Question. DoesT exist? If so, how do we define it?

1 See for the motive behind T in Section
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6.3.3. Preliminary Choice Function. Hence, using |S’|, |S’|, |S’|, E(r Sectlon.E (C,Gy) Section,

and T'(C, G), such that with the absolute value function || - ||, ceiling functlon [], and nearest integer function
[-], we define the preliminary choice function:

K(e,G}) =

[s/1([s7]+2]s"])

(187 1+1s"1) (187 [+1S"1+157T) (1 [Is7171s"1])
(14 171717 (1 + [1s11/77))

where £, E, and T  are “removed” when £, E = 0, the choice function which answers the leading question in
Sectioncould be the followingﬂ

Theorem 9. If we define:

Is'|

1+ ||EB(r) — &, GH]])

_‘5/‘ +‘S,‘ - T(C,G1)E(C, GY) (153)

M(e,Gy) = |8'(e, GDI(K (e, GF) — |S'(e, GT)]) (154)
M(e,G7) = |8'(e, GY)(K (e, G3F) — S'(e, G37)]) (155)
where for M(e,G}), we define M(e, GF) to be the same as M(e, G5*) when swapping “v € N” with “r € N”
(fm’ Equatzonu -) and sets G with G5~ (for Equatzon" then for constant v > 0 and variable
v* >0, if[F
S(e,r,v*,Gr*) = inf ({|S8'(e,G)| : v € N, M(e,GI*) > M(e,Gr) > v*} U {v*}) +v (156)
and:

S(e,r,v*,Gy) =sup ({|S'(e,G;*)| s v € N,v* < M(e,Gy) < M(e,Gr)}U{—v*}) +v (157)
where for allr,v € N, there exists a Ax € B and f} € A (Section[6.] crit.[3), such that for all A%* € B(R™)\B
and fi* € B(AF) U (B(AX) \ B) (Sectwn crit. @ whenever|"|
< 5) } 7 (158)

c—lnf{||1—c1|| V(e >0)3(c1 > 0)¥(r € N)3(v € N) (Hm

—cC1

and[™

e : A(A) = R is a function and the fized rate of expansion
E(r) E(r)>0
1 E(r)=0
n € N is the dimension of R™
d(X,Y) is the n-dimensional Euclidean distance between points X, Y € R”
D, =sup{d(z,y) : x,y € G} := graph(f})}
D! = limy_o(D,44 — D,)/h is the generalized derivatz'v of D,
4/(D) D, £0
1 D/ =0
Vol(B,,(C,r)) is the volume of an n-dimensional ball of radius r centered at reference point C' € R"
sign(+) is the sign function
[-] is the ceiling function
|-| is the floor function
dimy (G?) is the Hausdorff dimension of the set G = graph(f¥) C R**!
[|- ]| is the absolute value function
The following is shortened for brevity:
° dg —dQ(G* )— Hn—dlmH(G*)H
o 5:=5(G5,n) =1- 2dimy(G)

° El(T’) =

9, =

12 5ee Section ﬂl for the reason behind choosing the choice function in Theorem @
13 See Section [6.4.5| for the motivation of S(e,r,v*,Gr*) and S(e,r,v*, G:*) (Equations and D
14 See Section [6.4.5| for the motivation of ¢ (Equation j

15Gee Section [6.4.6] for the motivation of V (e, Gk, n) (Equation [159)
16 For a definition of the notation lim, see Section
e—0
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e t1 :=sign(|di/n])

e to :=sign([s])
da/n)sign(te+||D,E1(r)D,
e D, — (Do, yp, ) @/t +DEL()D: 1)

o P(r) is the partial sum formula of [[,_, (t1 + k®)
« Py(r) =P (QTEI(T)(Dr)signw(r))T(dz/nﬂlfsignw(r»))

then szI
Vie,Grn) = (159)

’7<2d2(lsign(©r,»E(T)Dr)) (W) (tz + DrP1(7“))n> /5—‘ /\S'(E,GZ)I

the choice function is[™

limsup lim limsup
e—0 V'O rooo

Sign(M (Ea G:))g(é‘, ) U*v GZ*) _ —V(e,G},n)
( G o ‘ 1o

sign(M (5, G;))ﬁ(&, T, G:*) _ Cfv(s,G:,n) _
|8 (e, G + v -

liminf lim liminf
e—0 v*—o00 r—oo

Slgn(M (57 G:))E(E, k,v*, G;*) —V(e,Gr,n)
VG 161
<< [S'(e. G +v ‘ 1oy

Sign(M (65 G:))é(é‘, G G:*) _ C—V(E,G:,n) -0
|8'(e,GY) +v

where {G% : v € A(A)} := {graph(f}) : v € A(A)} satisfies Equation[160 & Equation [161 Therefore, the
expected value which answers the leading question (Section[3.1)) is E[f}]. (Note, we want sup{) = —co and
inf@ = +o0.)

6.4. Explaining The Choice Function and Evidence The Choice Function Is Credible. Letn € N
and suppose f : A C R™ — Ris a function, where A and f are Borel.

We start our reasoning with f which has countably infinite or discrete graphs, then generalize the reasoning to
f with an uncountable and non-discrete graph.

6.4.1. Evidence With Programming. Since the choice function in Equations[I60|and [I61]is long and extremely
sophisticated, we use programming to simplify the calculations. Note, it is only necessary to define ¢ > 0,
n € N, dimg(G;) (Section[6.]crit. [2), |S' (e, G;)| and |S' (g, G3*)| (Equation[l48), E(r) and E(v) (Section[3.1]E),
E(C,Gy) and E(C,Gr*) (Section5.4), and D, (pg. 27).

Before defining the code, we explain its limitations. (We want to rewrite the program.)

Part 1. Limitations

The programming in Codeproduces outputs without errors, when the fixed rate of expansion F(r) = 0 and
the graph of f is countably infinite. Despite this, Entropyl and Entropy2 cannot use the floor or ceiling function,
since solving for r or v from Entropy1 and Entropy2 in TableLowAlphr, TableUpAlphr, TableLowAlphv, and
TableUpAlphvis beyond Mathematica’s scope. The majorissueis g cannot be large enough, since the computation
time of the code would be too long. Hence, when E(r), E(v) > 0 or the graph of f is uncountable, we have to
rewrite the code or use a supercomputer.

17 See Section for the motivation of V (e, G5, n) (Equation |159)
18 For the definitions of the notations lim sup._,o and liminfc ¢, see Section m
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Part 2. Code of Choice Function

CobE 12. Code For Equationsand

Clear [” Global ‘%7 ]

eps= (*Value of €. See Section step *)

(* ‘LengthS1’° is |S'(e,Gf)| (Equation *)
LengthS1[r_] := LengthS1l[r] =

(* ‘Entropyl’ is the approzimation of sup sup  E(L(S(C(e,G),w),v¥))) using asymptotic analysis
wEQe,r YETe 1
See Equation crit. m*)

Entropyl[r_-] := Entropyl[r] =

(* ‘LengthS2’ is |S'(e,G5*)| (Equation *)
LengthS2[v_] := LengthS2[v] =

(* ‘Entropy2’ is the approzimation sup sup  E(L(S(C(e,Gy",w),v))) using asmyptotic analysis.
wEQe v YEYe v,w

See Equation m crit. m*)

Entropy2[v.] := Entropy2[v] =

q = 35; (xWe want q to be as large as possible; however, this is limited by
computation time. )

(*Below 1is the process of solving ’'TableLowAlphr’ which is |S'(e,G})|. See Equation . *)
LowAlphValuesr = Table]|
{soll[r_] :=
soll [r] = Reduce[v > 0 && Entropy2[v] <= Entropyl[r], v, Integers],
LowSampler = Max[v /. Solve[soll[r], {v}, Integers]],
LowAlphr = N[LengthS2[LowSampler]]}, {r, 3, q}];
TableLowAlphr = Table[LowAlphValuesr [[r — 3 + 1, 3]], {r, 3, q}];

(*Below is the process of solving ’'TableUpAlphr’ which is |S'(e,G})|. See Equation . *)
UpAlphValuesr = Table|
{solll[r_-] :=
solll[r] =
Reduce|[v < 20 && Entropy2[v] >= Entropyl|[r], v, Integers],
UpSampler = Min[v /. Solve[solll[r], {v}, Integers]],
UpAlphr = N[LengthS2[UpSampler]]}, {r, 3, q}];
TableUpAlphr = Table[UpAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

(*‘al[r_]’ 4is shorthand for |S'(s,G})|. See Equation . *)
al[r_] :=
al[r] = TableUpAlphr[[r — 3 + 1]];

(¥ ‘b1[r_]’ is shorthand for |S'(e,G})|. See Egquation [149]. )
bl[r_] := bl[r] = LengthS1[r];

(*‘cl[r_]’ is shorthand for |S'(e,Gr)|. See Equation . *)
cl[r_] := cl[r] = TableLowAlphr[[r — 3 + 1]];

* elow 18 e 1re rate o exrpansiton o . ote - = . or sim 1C1 - 8 a constant.
(*Bel is the fized rate of expansi f GI. Note, ‘E.0'=E. F implicity, ‘BE.0° i tant

Subscript [E, 0][r_-] :=
Subscript [E, 0][r] =

(¥ ‘E_1’ 1is on pg. 27x)
El[r-] :=
El[r] = Subscript[E, 0][r] — Sign[Subscript[E, 0][r]] + 1;

(x ‘ActualE1[r_]’ is the actual rate of expansion of G). See Section . *)
ActualEl[r_] := ActualEl[r] = 0;

(x ‘K1’ is K(e,Gr). See Equation . *)
Ki[r_] :=
Ki[r] = N[(1 +

*)
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RealAbs[ActualEl[r] —
Subscript [E, 0]]
r]]) (RealAbs[(bl]
v+
Ceiling [(bl]
r] (alfr] + 2 bl[r]))/((al[r] + bl[r]) (al[r] +
bl[r] + c1[r]))]) (1 4+ Round[al[r]/bl[r]]))/((1 +
Round [bl[r]/cl[r]]) (1 4+ Round[al[r]/cl[r]])) — bl[r]] +
bl[r]) + (ActualE1l[r])];

(*Below is the process of solving ‘TableLowAlphv’ which is |S'(e,GL*)|. See Equation . *)
LowAlphValuesv = Table]|
{sol2[v_] :=
sol2[v] = Reduce[r > 0 && Entropyl[r] <= Entropy2[v], r, Integers],
LowSamplev = Max[r /. Solve[sol2[v], {r}, Integers]],
LowAlphv = N[LengthS1[LowSamplev]]}, {v, 3, aq}];
TableLowAlphv = Table[LowAlphValuesv[[v — 3 + 1, 3]], {v, 3, qa}l;

(xBelow is the process of solving ‘TableUpAlphv’ which is |S'(e,G5*)|. See Equation *)
UpAlphValuesv = Table|
{sol21[v_] :=
sol2l [v] =
Reduce[r < 20 && Entropyl[r] >= Entropy2[v], r, Integers],
UpSamplev = Min[r /. Solve[sol21[v], {r}, Integers]],
UpAlphv = N[LengthS1[UpSamplev]]}, {v, 3, q}];
TableUpAlphv = Table[UpAlphValuesv[[v — 3 + 1, 3]], {v, 3, q}l;

(* ‘a2[v_]’ shorthand for |S'(e,G}*)|. See Equation . *)
a2[v_] =
a2[v] = TableUpAlphv[[v — 3 4+ 1]];

(* “b2[v_]’ is shorthand for |S'(e,G}*)|. See Equation m *)
b2[v_-] := b2[v] = LengthS2[v];

(* ‘c2[v_]’ shorthand for |S'(e,G:*)|. See Equation . *)
c2[v.] =
c2[v] = TableLowAlphv[[v — 3 + 1]];

(* “‘ActualE2[r_]’ is the actual rate of ezpansion of G.. See Section ‘ *)
ActualE2[r_] := ActualE2[r] =

(» ‘K2’ is K(e,GL*)x*)
K2[v_.] :=
K2[v] = N[(1 +
RealAbs[ActualE2 [v
Subscript [E, 0]]
v]]) (RealAbs[(
v+
Ceiling [(b2]
v] (a2[v] + 2 b2[v]))/((a2[v] + b2[v]) (a2[v] +
b2[v] + c2[v]))]) (1 + Round[a2[v]/b2[v]]))/((1 +
Round[b2[v]/c2[v]]) (1 4+ Round[a2[v]/c2[v]])) — b2[v]] +
b2[v]) 4+ (ActualE2[v])]

} —

b2 [
]

(* ‘Mr’ is M(e,Gr). See Equation [154]x)
Mr = Table[N[LengthS1[r] (K1[r] — LengthS1[r])], {r, 3, g — 1}];

(* ‘Mv’ is M(e,Gy*). See Equation [155[x)
Mv = Table [N[LengthS2[v] (K2[v] — LengthS2[v])], {v, 3, g — 1}];

(* ‘UpS’ is S(e,rm,v*,G}*). See Equation . We could mot add v* or v due to limitations
in programming. *)
UpS = Table]|
LengthS2 [Flatten |
Position [Mv, Min[Select [Mv, # >= Mr[[r — 4 + 2]] &]]]][[1]] +
4- 2], {r, 4, a - 3};

(* ‘DownS’ is S(e,r,v",G;*). See Equation [157|. We could not add v* or v due to limitations
in programming. *)
DownS = Table|
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LengthS2 [Flatten |
Position [Mv, Max[Select [Mv, # <= Mr[[r — 4 + 2]] &]]]][[1]] +
4 — 2], {r, 4, a — 3}];

n = (#*Dimension n € N of R"x)
dimH = (xHausdorff Dimension of G} x)

(% ‘Subscript [D, 0][r_]’ 4is the same as D, on pg. 27.x)
Subscript [D, 0][r-] := Subscript[D, 0][r] = ;

(* ’Df1[r_]’ is the same as D, on pg. 27%)

Dfi[r_-] :=

Piecewise[{{4/(Subscript [D, 0]’[r])"2, Subscript[D, 0]’[r] != 0}, {1,
Subscript [D, 0] ’[r] == 0}}]

(*The functions ‘di1’, ‘d2’, ‘s’, ‘t1’ and ‘t2’ can be found in pg. 27.

Due to their complexity, they are treated as constants.x)

dl = dimH;

d2 = RealAbs[n — dimH];

s =1 — (2/n) dimH;

t1 = Sign[Floor[dl/n]];

t2 = Sign[s Floor[s]];

VolB[x-] = (Pi"(x/2))/Gamma[x/2 + 1];

(#c[r-] is the simplified version of the constant c¢ in Equation *)
c[r-] := c¢[r] = LengthS1[r]/LengthS2[r];

(‘V[r]’ is V(e,Gr,n). See Equation )
Vir.] := V[r] =
Simplify [Ceiling [((2°(d2))" (1 —
tl Sign[Subscript[E, 0][r] Dfl[r] Subscript[D, 0]]
r11)) (VolB[d1]/
VolB[d2]) ((t2 4+ ((Subscript[D, 0]]
El[r] Dfl[r] Subscript[D, 0][r]]) ((d2/n) Sign]|
t2 + RealAbs|
El[r] Dfl[r] Subscript[D, 0][r]]])) Product]|
t1 + ks, {k, 1,
El[r] Df1]
r] (Subscript[D, 0][r]"(
Sign [Subscript [E, 0]]
r]])) (r°((d2/n) (1 —
Sign [Subscript [E, 0][r]])))}]) "n)/eps]/
LengthS1[r], r > 0]

(*Below is the choice function. See FEquations and *)
ChoiceFunction =
Table [N[((Sign[Mr[[r — 5 + 2]]] UpS[[r — 5 + 2]])/(LengthS1[r]) — (c|
P — 5+ 2)"(—V[r — 5+ 2]))] N[((Sign]
Mr[[r — 5 4+ 2]]] DownS[[r — 5 + 2]])/(LengthS1[r]) — (c]
v 54 2) (Ve - 5+ 21)], {r, 5, a - 3}]

6.4.2. Motivation of T and The Preliminary Choice Function.

Part 1. Summary

Suppose E : A(A) — R (Section[2.3.1)) is a function and the fixed rate of expansion.

When E > 0, the function T'(, G7) should have the choice function “choose” between different expected values
of families of bounded functions converging to f, where the graphs of the bounded functions in the families are
similar (Definition[]) to each other.

Definition 6 (Similar Families of Bounded Sets). The families of sets {G} :r € A(A)} and {G}* :v €
A(A)} are similar, if there exists N' € A(A) (Section[2.3.1), where for all v > N', there exists v € A(A),
such that:

G (GEAGE) =0
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and for allv > N', there exists r € A(A), such that:
(G (GEAG) =0
(Below is the definition of non-similar families of bounded sets.)

Definition 7 (Non-Similar Families of Bounded Sets). The families of sets {G* : r € A(A)} and
{Gy* v e A(A)} are non-similar, if there exists N' € A(A) (Section[2.3.1)), where for all v > N', there is
either a v € A(A), such that:

HAEH ) (GEAGE) #0
or for allv > N', there exists a r € A(A), such that:

(GO (GEAG) # 0

)

If the families of the bounded graphs are similar (Deﬁnition@, their expected values have the same “satisfying
(Section[3.1]) and finite average.

Thus, in the paragraph before Definition[6] the families of bounded functions should satisfy criteria[T}5]of
the leading question (Section. The hard part is defining a choice function which “chooses” a subset of these
families with the same “satisfying” (Section[3.1)) and finite expected value.

In addition, the preliminary choice function is based on the following example: a function f with a discrete or
countably infinite graph, which is generalized to f with a non-discrete and uncountable graph.

Part 2. Example to Understand T

When f is bounded and the graph of f is discrete or countably infinite, the choice function (Equationsand
[161) should choose the set of all £ € 2 (Section[6.T]crit. hich are equivalent to each other (Note[8] page[25))
and satisfy all the criteria in the leading question (Section|3.1))

For instance, when A = Qand f : A — R is a function (Section:

) = 1 ze{(2s+1)/(2t):s€Z,t € Nt #0}
TTV0 xg {25+ 1)/(20) s €Lt €Nt #£0}

2 should be the set of all equivalent families (Definition[3)) of bounded functions to { f;* : 7 € A(A) := N} (Section

[6-T]crit.[2) such that:
(1) f* A — Ris a function
) E:A(A) - R (ie., A(A) =N)isa function and the fixed rate of expansion (e.g., E = 1/2)

(2
(3) (A1 TEA()=N}=<{C/T Tl <o < — i r'})TEN
(4) fr(z) = f(x)forallz € A

The reason for the definitions are (f;*, A%) — (f, A) (Section[5.1]) and the “measure” (Section[5.3.1] Section
of {G% : r € A(A) := N} = {graph(f}) : r € N} increases at a rate superlinear to that of {G%* : v €
A(A) := N} = {graph(f;*) : v € N}, where (f*, A%*) — (f, A) and (f*)ven is non-equivalent (Definition [5)
to (f )T‘GN

Nonetheless, when removing 7'(C, G) from Equation the choice function in Equationsandmight
be unable to choose unique, “satisfying” (Section7 and finite average of f: e.g., whenever

(162)

(5) R:N — Risan arbitrary and non-constant function

(6) RVisthesetofall R: N — R

the choice function (Equationsand chooses a family of functions { f¥ : r € N} such that when:

(7) (AZ(R())ren = ({e/rt: —R(r) - 11 < ¢ < R - 11} ren

(8) fr(x) = f(w) foralla € AZ(R(r)),

depending on Ry, Ry € RY (crit.@, there exists a f € R where (f, A%(R1(r))), (f7**, A¥*(Ra(v))) — (f, A)

and E[f] # E[f**]. This means without T'(¢, F}¥), E[f] could be more than one value and is non-unique.
Hence, we demonstrate the former paragraph with the following code (i.e., Code[13]): suppose Ry (r) isR1 [r]

and Ry(r) isR2[r]. (Since Ry and Ry are non-constant functions, the text in Sectio part states we need

to rewrite the code or use a supercomputer.) The output of choicefunction might diverge to infinity, although
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the output should converge to zero when ActualE1 [r]=1/R1’ [r]—i.e., E(C, G) = 1/(L (R (7)) (Section.
For instance, consider Ry (r) = 2r and Ry (v) = v.

CoDE 13. Code For Non-Constant R and R»

Clear [” Global ‘%7 ]
(*You can substitute any value into ‘R2’, ‘LengthS1’, ‘Entropyl’, ‘LengthS2°‘, ‘Entropy2’,
‘q’, ‘Subscript[E,0]’, ’ActualRateE1’, ‘ActualRateE2°‘ , ’'Subscript[D,0]  x)

eps= (*Value of € and is mon—constant. See Section step *)

(* ‘R1° 4s Rjx)
Rl[r_]:=2r;

(* ‘R2’% 1s Ro and is non—constant)
R2[v_]:=wv;

(* ‘LengthS1° is |S'(e,Gr)| (Equation *)
LengthS1[r_] := LengthS1[r] = Rl[v] v!41;

(* ‘Entropyl’ 1is the approzimation of sup sup E(L(S(C(e,Gr,w),v))) using asymptotic analysis

WEQe,r YET L,
See Equation crit. m*)

Entropyl[r-] := Entropyl[r] = Log2[R1l[r] r!];

(* ‘LengthS2’ is |S'(e,GS*)| (Equation )*)
LengthS2[v_] := LengthS2[v] = R2[v] v!+41;

(* ‘Entropy2’ is the approzimation Estép . \spup E(L(S(C(e, G, w),9))) using asmyptotic analysis.
w e, v WE¥Ye v w

See Equation |5.3.1| crit. m*)
Entropy2[v-] := Entropy2[v] = Log2[R2[v] v!];

q = 35; (xWe want q to be as large as possible; however, this is limited by
computation time. x)

(*Below is the process of solving ’'TableLowAlphr’ which is |S'(e,G})|. See Equation . *)
LowAlphValuesr = Table]|
{soll[r_] :=
soll[r] = Reduce[v > 0 && Entropy2[v] <= Entropyl[r], v, Integers],
LowSampler = Max[v /. Solve[soll[r], {v}, Integers]],
LowAlphr = N[LengthS2 [LowSampler]]}, {r, 3, q}];
TableLowAlphr = Table[LowAlphValuesr [[r — 3 + 1, 3]], {r, 3, q}l];

(*Below is the process of solving ‘TableUpAlphr’ which is |S'(e,Gf)|. See Equation . *)
UpAlphValuesr = Table|
{solll[r_-] :=
solll[r] =
Reduce[v < 20 && Entropy2[v] >= Entropyl[r], v, Integers],
UpSampler = Min[v /. Solve[solll[r], {v}, Integers]],
UpAlphr = N[LengthS2 [UpSampler]]}, {r, 3, q}];
TableUpAlphr = Table[UpAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

(*“al[r_]’ is shorthand for |S'(e,G})|. See Equation . *)
al[r_] :=
al[r] = TableUpAlphr[[r 3+ 1]];

(% ‘b1 [r_]’ 4is shorthand for |S'(s,G})|. See Equation ‘ *)
bl[r_] := bl[r] = LengthS1[r];

(*‘cl1[r_]’ is shorthand for |S'(e,G,)|. See Equation .*)
cl[r_] := cl[r] = TableLowAlphr[[r — 3 + 1]];

(*Below is the fized rate of ezpansion of G). Note, ‘E_0’=E. For this ezample. ‘E0’ 1is
the constant 1/2.x)

Subscript [E, 0][r_] :=

Subscript [E, 0][r] = 1/R1’[r];
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(*‘E_1’ 1is on pg. 27x)
El[r_] :=
El[r] = Subscript[E, 0][r] — Sign[Subscript[E, 0][r]] + 1;

(x ‘ActualE1[r_]’ is the actual rate of expansion of G). See Section . *)
ActualEl[r_] := ActualEl[r] = 1/R1’[r];

(x ‘K1’ is K(e,G)). See Equation . *)
Ki[r_] :=
Kl[r] = N[(1 +
RealAbs[ActualEl[r] —
Subscript [E, 0]]
r]]) (RealAbs[(bl]
o+
Ceiling [(bl]

r] (al[r] + 2 bl[r]))/((al[r] + b1[r]) (al[r] +
bl[r] + c1[r]))]) (1 + Round[al[r]/bl[r]]))/((1 +
Round[bl[r]/cl[r]]) (1 4+ Round[al[r]/cl[r]])) — bl[r]] +

bl[r]) + (ActualEl[r])]

(*Below is the process of solving ‘TableLowAlphv’ which is |S'(e,G;*)|. See Equation ‘ *)
LowAlphValuesv = Table]|
{sol2[v_] :=
sol2 [v] = Reduce[r > 0 && Entropyl[r] <= Entropy2[v], r, Integers],

LowSamplev = Max[r /. Solve[sol2[v], {r}, Integers]],

LowAlphv = N[LengthS1 [LowSamplev]]}, {v, 3, q}];
TableLowAlphv = Table[LowAlphValuesv [[v — 3 + 1, 3]], {v, 3, a}l;
(*Below is the process of solving ‘TableUpAlphv’ which is |S'(e,G:*)|. See Equation *)
UpAlphValuesv = Table|

{sol21 [v_] :=

sol21[v] =
Reduce[r < 20 && Entropyl[r] >= Entropy2[v], r, Integers],
UpSamplev = Min[r /. Solve[sol21[v], {r}, Integers]],
UpAlphv = N[LengthS1[UpSamplev]]}, {v, 3, q}];
TableUpAlphv = Table[UpAlphValuesv|[[v — 3 + 1, 3]], {v, 3, a}];

(% “a2[v_]’ shorthand for |S'(s,G}*)|. See Equation . *)
a2[v_] =
a2[v] = TableUpAlphv[[v — 3 + 1]];

(*“b2[v_]’ is shorthand for |S'(e,G}*)|. See Equation . *)
b2[v_] := b2[v] = LengthS2[v];

(% “c2[v_]’ shorthand for |S'(s,GL*)|. See Equation . *)
c2[v.] =
c2[v] = TableLowAlphv[[v — 3 4+ 1]];

(* ‘ActualE2[r_]’ is the actual rate of ezpansion of G).. See Section . *)
ActualE2[r_] := ActualE2[r] =1/R2’[r];

(+ ‘K2’ is K(e,G:)x)
K2[v_.] :=
K2[v] = N[(1 +
RealAbs [ActualE2[v] —
Subscript [E, 0]]
v]]) (RealAbs[(b2]
v] (1 +
Ceiling [(b2]

vl (a2[v] 4+ 2 b2[v]))/((a2[v] + b2[v]) (a2[v] +
b2[v] + c2[v]))]) (1 + Round[a2[v]/b2[v]]))/((1 +
Round[b?[v]/cQ[v%]) (1 + Round[a2[v]/c2[v]])) — b2[v]] +

b2[v]) + (ActualE2[v])

(* ‘Mr’ is M(e,Gr). See Equation *)
Mr = Table [N[LengthS1[r] (Kl1[r] — LengthS1[r])], {r, 3, g — 1}];

(% ‘Mv’ is M(e,Gy*). See Equation *)
Mv = Table[N[LengthS2[v] (K2[v] — LengthS2[v])], {v, 3, q — 1}];
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(* ‘UpS’ is S(e,m,v*,G:*). See Equation ‘ We could not add v* or v due to limitations
in programming. *)
UpS = Table]|
LengthS2 [Flatten |
Position [Mv, Min[Select [Mv, # >= Mr[[r 4 + 2] &]111001]] +
4 — 2], {r, 4, ¢ — 3}];

(% ‘DownS’ is S(e,r,v",G.*). See Equation [157|. We could not add v* or v due to limitations
in programming. *)
DownS = Table|
LengthS2 [Flatten |
Position [Mv, Max[Select [Mv, # <= Mr[[r — 4 + 2]] &]]]][[1]] +
4 2], {r, 4, q - 3}];

n = 1; (*Dimension n €N of R" %)
dimH = 0; (*Hausdorff Dimension of G x)

(* ‘Subscript [D, 0][r_]’ 4is the same as D, on pg. 27.%)
Subscript [D, 0][r_-] := Subscript[D, 0][r] = ;

(¥ 'Df1[r_]’ 4is the same as D, on pg. 27x)

Dfi[r_] :=

Piecewise[{{4/(Subscript [D, 0]’[r])"2, Subscript[D, 0]’[r] != 0}, {1,
Subscript [D, 0] ’'[r] == 0}}]

(*The functions ‘d1’, ‘d2’, ‘s’, ‘t1’ and ‘t2’ can be found in pg. 27.

Due to their complexzity, they are treated as constantsx*)

dl = dimH;

d2 = RealAbs|[n dimH ] ;

s =1 — (2/n) dimH;

tl1 = Sign[Floor[dl/n]];

t2 = Sign[s Floor[s]];

VolB[x-] := (Pi"(x/2))/Gamma[x/2 + 1];

(#¥c[r-] is the simplified version of the constant c in FEquation *)
c[r-] := c¢[r] = LengthS1[r]/LengthS2[r];

(‘V[r]’ is V(e,G;,n). See Equation m)
Vir.] := V[r] =
Simplify [ Ceiling [((2"(d2))" (1 —
tl Sign[Subscript[E, 0][r] Dfl[r] Subscript[D, 0]]
r]1)) (VolB[d1]/
VolB[d2]) ((t2 4+ ((Subscript[D, 0]
El[r] Dfl[r] Subscript[D, 0][r]]) ((d2/n) Sign]|
t2 + RealAbs|
El[r] Dfl[r] Subscript[D, 0][r]]])) Product]
t1 + k°s, {k, 1,
El[r] Df1]
r] (Subscript[D, 0][r]"(
Sign [Subscript [E, 0]]
r]])) (r((d2/n) (1 —
Sign[Subscript [E, 0][r]])))}]) "n)/eps]/
LengthS1[r], r > 0]

(#*Below 1is the choice function. See Equations and *)

ChoiceFunction =

Table [N[((Sign[Mr[[r — 5 + 2]]] UpS[[r — 5 + 2]])/(LengthS1[r]) — (c|
r — 5+ 2])"(—=V[r — 5 4+ 2]))] N[((Sign]
Mr[[r — 5 4+ 2]]] DownS[[r — 5 + 2]])/(LengthS1[r]) — (c|
r— 5+ 2))°(=V[r — 5+ 2]))], {r, 5, g — 3}]

Part 3. Example To Understand Preliminary Choice Function

The preliminary choice function is essential to defining a choice function. When f is bounded, the preliminary
choice function K (e, G}) should have the final choice function “choose” between families of bounded functions
converging to f whose graphs have “measures” increasing at rates superlinear to that of non-equivalent (Definition
) such families. In other terms, when | - | is the cardinality, we want % and f; € % (Section[6.1]crit. 2) such that:
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(1) K(,G¥) =|S(e,G)| and K (e, Gy) — |S(e, Gy)| = 0 (Equations|149|and
(2) K(g,G*) #1S(e,GE)| and K (e, G*) — |S(e, G5*)| # 0 (Equations|149| 9and
Consider the following example:

Suppose f : A — Ris a function, where A = Q N [0, 1] and

Fa) = { 1 ze{(2s+1)/(2t):s€Z,teN,t#£0}N[0,1] (163)
0 z&{(2s+1)/(2t):s€Z,t eN,;t#0}N][0,1]

In addition, suppose (f¥, A%), (fx*, Ax*) — (f, A). Then, consider:
(1) {A7:re A(A )'=N}=({511SCST!})reN
(2) {A:ve AA) =N} =({$:1<c<d, d<v})pen
(3) f2(x) = f(2) forall z € Az,
(4) f2*(z) = f(z) foralle € A%*
(5) {Gz : v € A(A) := N} = (graph(f)), o
(6) 1G5 : v € A(A) = N} = (graph(:*)),
(7) dimg(+) is the Hausdorff dimension
(8) HAmu()(.)is the Hausdorff measure in its dimension on the Borel o-algebra
When |- |is the cardinality, |’ (e, G£)| = [HYEm1(E) (GF) /el and |S' (e, GE¥)| = [HEmu(EL) (GE*) /e]. Since the graph
of f is countably infinite, the smallest € > 0 can be is 1. Therefore, ¢ = 1. (When the graph of f is uncountable,
€ > 0 should be smaller and approach zero). Hence, |5’ (¢, G1)| = [HE™R(ED(GE) /e] ~ [(r! +1)/1] = [r! + 1] and
1S (e,G3N)| = [¢ ( /1] ~ %v? where ¢(v) is Euler’s Totient functio

Using Code we get LengthSl isr!+1landLengthS2isapproximately (3/(Pi~2))v"~2(i.e., theapproximation
of the Totient functiont~).

Moreover, using Equation[50] E(L(S(C(1, G}, w),))) ~ logy(r!) and using [18], E(L(S(C(1, G%,w), ¥))) ~
21og,(v) + 1 — log,(37). Hence, Entropyl [r]1=Log2[r!] and Entropy2[v]=21log2[v]+1-1log2[3 Pil.

CoDE 14. First Example of Preliminary Choice Function X [r]
Clear [” Global ‘%7 ]

eps=1; (*Value of € since the graph of f is countably infinite. See Section step *)

(* ‘LengthS1° is |S'(e,Gf)| (Equation *)
LengthS1[r_] := LengthS1[r] = r!+41;

(* ‘Entropyl’ is the approzimation of sup sup  E(L(S(C(e,G),w),v))) using asymptotic analysis
wEQe r YEYVe 1w

See Equation crit. EE*)

Entropyl[r-] := Entropyl[r] = Log2[r!];

(% ‘LengthS2° is |S'(e,G:*)| (Equation *)
LengthS2[v_] := LengthS2[v] = (3/(Pi)"2)v"2;

(* ‘Entropy2’ is the approzimation sup sup  E(L(S(C(e,Gy*,w),v))) using asmyptotic analysis.
wEQe v YEVe v,w

See Equation crit. EE*)

Entropy2[v.] := Entropy2[v] = 2Log2[v]+1—-Log2[3 Pi];

q = 10; (xWe want q to be as large as possible; however, this is limited by
computation time. x)

(*Below is the process of solving ‘TableLowAlphr’ which is |S'(e,G})|. See Equation . *)
LowAlphValuesr = Table]|
{soll[r_] :=
soll [r] = Reduce[v > 0 && Entropy2[v] <= Entropyl[r], v, Integers],
LowSampler = Max[v /. Solve[soll[r], {v}, Integers]],
LowAlphr = N[LengthS2[LowSampler]]}, {r, 3, q}];
TableLowAlphr = Table[LowAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

19 The Totient function ¢(v) is the number of positive integers less than positive integer v which are coprime to v



38 BHARATH KRISHNAN

(*Below is the process of solving ‘TableUpAlphr’ which is |S'(e,G})|. See Equation . *)
UpAlphValuesr = Table|
{solll[r_] :=
solll[r] =
Reduce[v < 20 && Entropy2[v] >= Entropyl[r], v, Integers],
UpSampler = Min[v /. Solve[solll[r], {v}, Integers]],
UpAlphr = N[LengthS2[UpSampler]]}, {r, 3, q}l;
TableUpAlphr = Table[UpAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

(*‘al[r_]’ 4is shorthand for |S'(s,G})|. See Equation . *)
al[r_] :=
al[r] = TableUpAlphr[[r — 3 + 1]];

(¥ ‘b1[r_]’ is shorthand for |S'(e,G})|. See Egquation [149]. )
bl[r_] := bl[r] = LengthS1[r];

(*‘cl[r_]’ is shorthand for |S'(e,G,)|. See Equation . *)
cl[r_] := cl[r] = TableLowAlphr[[r — 3 + 1]];

(*Below is the fized rate of ezpansion of G). Note, ‘E_0’=E. For simplicity, ‘E_.0’ is a constant. %)
Subscript [E, 0][r_-] :=

Subscript [E, 0][r] = 0; (*We choose zero since we are focusing on functions

with bounded graphsx)

(¥ ‘E_1° is on pg. 27x)
El[r_-] :=
El[r] = Subscript[E, 0][r] — Sign[Subscript[E, 0][r]] + 1;

(* ‘ActualE1[r_]’ is the actual rate of expansion of G.. See Section . *)
ActualEl[r_] := ActualEl[r] = 0; (*We choose since we are focusing on functions
with bounded graphsx*)

(* ‘K1’ is K(e,Gr). See Equation . *)
Kl[r_] :=
Ki[r] = N[(1 +
RealAbs[ActualEl [r
Subscript [E, 0]]
r]]) (RealAbs]|(
SRt
Ceiling [( b1
v] (allr] + 2 bi[r]))/((al[r] + bi[r]) (allr] +
bL[r] + cl(r]))]) (1 + Round[al[r]/b1[r]]))/((1 +
Round[bl[r]/cl[r]]) (1 4+ Round[al[r]/cl[r]])) — bl[r]] +
bl[r]) + (ActualEl[r])];

} —

b1

K[5]
(*The output is 121x)

The output of K[5] is 121, which is the same as LengthS1[5].

CODE 15. Previous Sentence in Code

Clear [” Global ‘%7 ]

r= (%7 is a positive integer*)
K[r]—LengthS1[r]

(*The output is zerox)

Therefore, K [r]-LengthS1[r]=0. Otherwise, we exclude families of bounded functions f} € % (Sectionl6.1]

crit. 2)), where [S(e, G)| # K(e,Gy) or [S(e,G*)| — K (e, G5*) = 0.
For instance, using the function f : A — R in Equation|164} where A = Q N[0, 1] and

{1 ze{(2s+1)/(2t):s€Z,t Nt £0}N0,1]

0 z&{(2s+1)/(2t):s€Z,t eN,;t#0}N][0,1] (164)

e

~

when swapping (G})ren with (G3*)en (i.e., swap f and Af with f;* and A%* respectively):
(1) {Ar:re A(A) =N} =({$:1<c<d, d<r})en
(2) {Arr:ve A(A) =N} = ({5 : 1 <e<vl})pen

v!
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(3) f(x) = f(x) forallz € AL,
(4) f*(2) = f(2) forallw € A7*

(5) {G:: r € A(A) := N} = (graph(f;)), oy
(6) {G3: v € A(A) := N} = (graph(f"))uen

Note, unlike the former example, |S'(,G;)| = [#(r)/e] ~ 2r? (see footnotﬂ rather than ! + 1 and
|S' (e, G&*)| ~ v! 4+ 1 rather than %vz. In addition, we swap their entropies, where the following code gives us
Unequal [LengthS1[r]-K1[r],0] and Unequal [LengthS2[r]-K2[r],0].

CODE 16. Second Example For Preliminary Choice Function
Clear [” Global ‘%7 ]

eps=1; (*Value of € since the graph of f is countably infinite. See Section step *)

(% ‘LengthS1’° is |S'(e,Gf)| (Equation *)
LengthS1[r_] := LengthS1[r] = (3/(Pi)"2)r"2;

(#* ‘Emtropyl’ is the approzimation of sup sup E(L(S(C(e,Gr,w),v))) using asymptotic analysis

WEDe p YEVe 1w
See Equation crit. EE*)

Entropyl|[r_] := Entropyl[r] = 2Log2[r]+1—-Log2[3 Pi];

(% ‘LengthS2° is |S'(e,G:*)| (Equation *)

LengthS2[v_] := LengthS2[v] = v!41;

(#* ‘Emntropy2’ is the approzimation sup sup E(L(S(C(e,Gi*,w),v))) using asmyptotic analysis.
wEQe v YETVe v, w

See Equation crit. EE*)

Entropy2[v-] := Entropy2[v] = Log2[v!];

q = 10; (#We want q to be as large as possible; however, this is limited by

computation time. x)

(*Below is the process of solving ‘TableLowAlphr’ which is |S'(e,G})|. See Equation . *)
LowAlphValuesr = Table]|
{soll[r_] :=
soll [r] = Reduce[v > 0 && Entropy2[v] <= Entropyl[r], v, Integers],
LowSampler = Max[v /. Solve[soll[r], {v}, Integers]],
LowAlphr = N[LengthS2 [LowSampler]]}, {r, 3, q}];
TableLowAlphr = Table[LowAlphValuesr [[r — 3 + 1, 3]], {r, 3, q}l];

(#*Below is the process of solving ‘TableUpAlphr’ which is |S'(e,G})|. See Equation . *)
UpAlphValuesr = Table|
{solll[r_-] :=
solll[r] =
Reduce[v < 2000 && Entropy2[v] >= Entropyl[r], v, Integers],
UpSampler = Min[v /. Solve[solll[r], {v}, Integers]],
UpAlphr = N[LengthS2[UpSampler]]}, {r, 3, q}l;
TableUpAlphr = Table[UpAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

(*‘al[r_]’ is shorthand for |S'(e,G})|. See Equation . *)
al[r_] :=
al[r] = TableUpAlphr[[r — 3 + 1]];

(*“b1[r_]’ is shorthand for |S'(¢,Gr)|. See Equation [149|. )
bl[r_] := bl[r] = LengthS1[r];

(x‘c1[r_]’ is shorthand for |S'(e,G,)|. See Equation . *)
cl[r_] := cl[r] = TableLowAlphr[[r — 3 + 1]];

(*Below is the fized rate of ezpansion of G). Note, ‘E_0’=E. For simplicity, 'E_.0’ is a constant.

Subscript [E, 0][r_-] :=
Subscript [E, 0][r] = 0;

20 The Totient function ¢(r) is the number of positive integers less than positive integer » which are coprime to 7

*)
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(* “E_1’ is on pg. 27%)
El[r_-] :=
El[r] = Subscript[E, 0][r] — Sign[Subscript[E, 0][r]] + 1;

(* ‘ActualE1[r_]’ is the actual rate of expansion of G.. See Section . *)
ActualEl[r_] := ActualEl[r] = 0;

(» ‘K1’ is K(e,Gr). See Equation . *)
Ki[r_] :=
Ki[r] = N[(1 +
RealAbs[ActualEl[r] —
Subscript [E, 0]]
r]]) (RealAbs[(bl]
v+
Ceiling [(bl]
r] (al[r] + 2 bl[r]))/((al[r] + bl[r]) (al[r] +
bl[r] + cl[r]))]) (1 + Round[al[r]/bLl[r]]))/((1 +
Round[bl[r]/cl[r]]) (1 + Round[al[r]/cl[r]])) bl[r]] +
bl[r]) 4+ (ActualE1l[r])];

(*Below is the process of solving ‘TableLowAlphv’ which is |S'(e,GL*)|. See Equation . *)
LowAlphValuesv = Table]|
{sol2[v_] :=
sol2[v] = Reduce[r > 0 && Entropyl
LowSamplev = Max[r /. Solve[sol2[v]
LowAlphv = N[LengthS1[LowSamplev]]}
TableLowAlphv = Table[LowAlphValuesv [[

[r] <= Entropy2[v], r, Integers],
, {r}, Integers]],
) {V7 3, Q}]§
v—3+1, 3]], {v, 3, a}];
(xBelow is the process of solving ‘TableUpAlphv’ which is |S'(e,G5*)|. See Equation *)
UpAlphValuesv = Table|
{sol21[v_] :=
sol21[v] =
Reduce[r < 20 && Entropyl[r] >= Entropy2[v], r, Integers],
UpSamplev = Min[r /. Solve[sol21[v], {r}, Integers]],
UpAlphv = N[LengthS1[UpSamplev]]}, {v, 3, q}];
TableUpAlphv = Table[UpAlphValuesv[[v — 3 + 1, 3]], {v, 3, q}l;

(* ‘a2[v_]’ shorthand for |S'(e,G}*)|. See Equation . *)
a2[v_] =
a2[v] = TableUpAlphv[[v — 3 + 1]];

(*“b2[v_]’ is shorthand for |S'(e,G}*)|. See Equation . *)
b2[v_-] := b2[v] = LengthS2[v];

(* ‘c2[v_]’ shorthand for |S'(e,G}*)|. See Equation . *)
c2[v_] =
c2[v] = TableLowAlphv[[v — 3 + 1]];

(» ‘ActualE2[r_]’ is the actual rate of expansion of G.. See Section , *)
ActualE2[r_] := ActualE2[r] =0;

(» ‘K2’ is K(e,GL*)x*)
K2[v_] =
K2[v] = N[(1 +
RealAbs[ActualE [v] —
Subscript [E, 0]]
v]]) (RealAbs[(b2]
v+
Ceiling [(b2]
v] (a2[v] + 2 b2[v]))/((a2[v] + b2[v]) (a2[v] +
b2[v] + c2(v]))]) (1 + Round[a2[v]/b2[v]]))/((1 +
Round[b2[v]/c2[v]]) (1 4+ Round[a2[v]/c2[v]])) — b2[v]] +
b2[v]) 4+ (ActualE[v])]

K1[5] —LengthS1[5]
(*The output is 5.06606 %)

K2[5] —LengthS2[5]
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(*The output is 30.5%)

Hence, in this case (crit. [If6] page[38)), we exclude the example of f; from 2 (crit.[2]page[27).

6.4.3. Motivation of M(e, Gr) and M(e, G5*). Suppose:
M(e,G7) = |8'(e, GDI(K (e, GF) = |S'(s, GY))
M(e,GY) = |8'(e, GY)|(K (e, G3F) — S/ (e, G)]).-

Then, lim, o, M(e,G}) =0 (i.e., K(g,G}) = |5 (e, G})|) or lim, _, oo M(e, Gf) = +00 and limy—, 0 M (e, G3¥)
=0 (e, K(e,G) =8 (e, G5)]) or limy, 00 M(e, G5*) = +00.

The purpose of M (when f is bounded) is to “choose” between different families of bounded function’s graphs
where their “measures” increase at rates linear to one another. We want f,. € 2 (crit. page 27)), such that when
{Gr :r € A(A)} = {graph(f}) : r € A(A)} and {G} : r € A(A)} = {graph(f}) : r € A(A)}, there exists a
linear r1 : A(A) = A(A), where M(e, Gy ) < M(e, Gi¥) or M(g,G) < M(e, Gr¥ )

Note, the former statement is true: i.e., when the “measure” of {G : r € A(A)} increases at arate superlinear
or sublinear to that of {G3* : v € A(A)}. Using Section[6.4.2] part [3|on page [36] when the “measure” of
{Gr :r € A(A)} increases at a rate superlinear to that of {G}* : v € A(A)}, K(¢,G}) — |5'(¢,G)| = 0and
M(e, G}) = 0. Moreover, when the “measure” of {G} : r € A(A)} increases at arate sublinear (Section|[5.3.5]
page to that of {G}* : v € A(A)}, M(e, G 1)) < M(e,G}¥) or M(e, Gf) < M(e, G )

For instance, in Code[16] the “measure” of (G}),cn increases at a rate sublinear to that of (G*),en: when

v
swapping “r € N” with v € N and G with G%*, the “measure” of (G}),cn increases at a rate superlinear (Section

page[13) to that of (G%*)yen. (In Theorem|[7, when the “measure” (G}),cn increases at a rate superlinear
to that of (G3*)ven, the “measure” of (G5*),en increases at a rate sublinear to that of (G%),cn). In addition, in

Code[l6] |S(e, G)| < |S(e,Gy¥)| and K (e, G) — |S' (e, Gy)| < K(g,G5*) — |S' (e, Gi*)| for large k:
CoDE 17. Continuing From Code

k= (#*We want to rewrite Code to allow an output for larger wvalues of ‘k’%*);

RatioM1 [ k_]:=RatioM1[k]=LengthS1[k]/LengthS2 k]
RatioM1[100]
(*The output should be close to zerox)

RatioM2 [k_]:=RatioM2 [k]=(K1[k]—LengthS1[k])/(K2[k]—LengthS2[k])
RatioM2[100]
(#*The output should be close to zerox)

Thus, M(e, G}) < M(e, G}*) for large k.

However, when the “measure” of {G} : r € A(A)} increases at a rate linear (Section [5.3.3|crit. [3) to that
of {G* : v € A(A)}, there exists a linear 1 : N — Nsuch that M(e, G}) is proportional to M(e, G}¥,)) or
M(e, G:I(k)) is proportional to M (e, G3*) for large k.

For instance, suppose f : A — Ris a function, where A = Q N [0, 1] and

ﬂ@:{l ze{(2s+1)/(2):s € Z,t e N,t #0} N[0, 1]

0 z¢{(2s+1)/(2t):s€Z,teN,t+£0}n10,1] (165)

such that:
(1) {Ar:re A(A) =N} ={m/rl: 1 <m <7rl})en

)
) fX(x) = f(z)forallx € AX

) fi*(z) = f(x) forallx € AZ*

) {Gr:re A(A) =N} = ({(x, fr@):ze A :={m/rl:1<m< T!}})T’EN)'I"EN’

6; {Gr*:ve A(A) =N} = ({(z, )z e Ay i={m/20WN):1<m < 2(v!)})UEN})v€N

for large k
(8) dimg(+) is the Hausdorff dimension
(9) HImu()(.) is the Hausdorff measure in its dimension on the Borel o-algebra
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when | - | is the cardinality, |S’(¢, G¥)| = [HIM(G)(GF) /] and [S' (g, G7*)| = [HIMu(G) (G#) /e]. Since
the graph of f is countably infinite, the smallest € > 0 can be is 1. Therefore, e = 1. (When the graph of f is
uncountable, ¢ > 0 should be smaller and approach zero). Hence, |S'(¢,G%)| ~ [(r! +1)/e] = [r! + 1] and
|S"(e,GF)| ~ [(2rl 4+ 1) /e] = [2r! 4+ 1].

Note, using Equation [50, E(L(S(C(1, G}, w),¥))) ~ logy(r!) and similarly E(L(S(C(1, G3*,w),v¥))) ~
log, (2v!). In addition, r1 (k) = k, since |S'(e, G}, )|/ (e, Gi)| = |S'(e, G})| /1S (e, Gi¥)| = 1/2 s finite for
large k.

Hence, LengthS1[r]=r!+1, Entropyl[r]=Log2[r!], LengthS2[v]=2v!+1, and Log2[2v!]. (The output of
M(e, G}) is Mr and the output of M (e, G5*) is Mv.)

CoDE 18. Second Example For Preliminary Choice Function
Clear [” Global ‘%7 ]

eps=1; (*Value of € since the graph of f is countably infinite. See Section step *)

(* ‘LengthS1’ is |S'(e,Gf)| (Equation *)
LengthS1[r_] := LengthS1[r] = r!+41

(#* ‘Emtropyl’ is the approzimation of sup sup E(L(S(C(e,Gr,w),v))) using asymptotic analysis
weQe r YEYe 1w
See Equation crit. EEl*)

Entropyl[r-] := Entropyl[r] = Log2[r!]

(* ‘LengthS2’ is |S'(e,G}*)| (Equation *)
LengthS2[v_] := LengthS2[v] = 2v!41

(#* ‘Emtropy2’ is the approzimation sup sup E(L(S(C(e,Gi*,w),v))) using asmyptotic analysis.
wWEQe v YVEVe v w
See Equation crit. EEl*)

Entropy2[v.] := Entropy2[v] = Log2[v!]

q = 10; (xWe want q to be as large as possible; however, this is limited by
computation time. x)

(*Below 1is the process of solving ‘TableLowAlphr’ which is |S'(e,G})|. See Equation . *)
LowAlphValuesr = Table]|
{soll[r_] :=
soll [r] = Reduce[v > 0 && Entropy2[v] <= Entropyl[r], v, Integers],
LowSampler = Max[v /. Solve[soll[r], {v}, Integers]],
LowAlphr = N[LengthS2[LowSampler]]}, {r, 3, q}];
TableLowAlphr = Table[LowAlphValuesr [[r — 3 + 1, 3]], {r, 3, a}];

(*Below is the process of solving ‘TableUpAlphr’ which is |S'(e,G%)|. See Equation . *)
UpAlphValuesr = Table|
{solll[r_] :=
solll[r] =
Reduce[v < 2000 && Entropy2[v] >= Entropyl[r], v, Integers],
UpSampler = Min[v /. Solve[solll[r], {v}, Integers]],
UpAlphr = N[LengthS2[UpSampler]]}, {r, 3, q}l];
TableUpAlphr = Table[UpAlphValuesr [[r — 3 + 1, 3]], {r, 3, aq}l;

(*‘al[r_]° 4is shorthand for |S'(s,G})|. See Equation ‘ *)
al[r_] :=
al[r] = TableUpAlphr[[r — 3 + 1]];

(% ‘b1[r_]’ is shorthand for |S'(e,G})|. See Equation [149]. )
bl[r_] := bl[r] = LengthS1[r];

(*‘c1[r_]’ is shorthand for |S'(e,G,)|. See Equation . *)
cl[r_] := cl[r] = TableLowAlphr[[r — 3 + 1]];

(*Below is the fized rate of ezpansion of G). Note, ‘E_0’=E. For simplicity, 'E_.0’ is a constant.
Subscript [E, 0][r_-] :=
Subscript [E, 0][r] = 0;

*)
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(* “E_1’ is on pg. 27%)
El[r_-] :=
El[r] = Subscript[E, 0][r] — Sign[Subscript[E, 0][r]] + 1;

(* ‘ActualE1[r_]’ is the actual rate of expansion of G.. See Section . *)
ActualEl[r_] := ActualEl[r] = 0;

(» ‘K1’ is K(e,Gr). See Equation . *)
Ki[r_] :=
Ki[r] = N[(1 +
RealAbs[ActualE[r] —
Subscript [E, 0]]
r]]) (RealAbs[(bl]
v+
Ceiling [(bl]
r] (alfr] + 2 bl[r]))/((alr] + bl[r]) (allr] +
bifr] + c1(r]))]) (1 + Round[al[r]/b1[r]]))/((1 +
Round[bl[r]/cl[r]]) (1 + Round[al[r]/cl[r]])) bl[r]] +
bl[r]) 4+ (ActualE[r])];

(*Below is the process of solving ‘TableLowAlphv’ which is |S'(e,GL*)|. See Equation . *)
LowAlphValuesv = Table]|
{sol2[v_] :=
sol2[v] = Reduce[r > 0 && Entropyl
LowSamplev = Max[r /. Solve[sol2[v]
LowAlphv = N[LengthS1[LowSamplev]]}
TableLowAlphv = Table[LowAlphValuesv [[

[r] <= Entropy2[v], r, Integers],
, {r}, Integers]],
) {V7 3, Q}]§
v—3+1, 3]], {v, 3, a}];
(xBelow is the process of solving ‘TableUpAlphv’ which is |S'(e,G5*)|. See Equation *)
UpAlphValuesv = Table|
{sol21[v_] :=
sol21[v] =
Reduce[r < 20 && Entropyl[r] >= Entropy2[v], r, Integers],
UpSamplev = Min[r /. Solve[sol21[v], {r}, Integers]],
UpAlphv = N[LengthS1[UpSamplev]]}, {v, 3, q}];
TableUpAlphv = Table[UpAlphValuesv[[v — 3 + 1, 3]], {v, 3, q}l;

(* ‘a2[v_]’ shorthand for |S'(e,G}*)|. See Equation . *)
a2[v_] =
a2[v] = TableUpAlphv[[v — 3 + 1]];

(*“b2[v_]’ is shorthand for |S'(e,G}*)|. See Equation . *)
b2[v_-] := b2[v] = LengthS2[v];

(* ‘c2[v_]’ shorthand for |S'(e,G}*)|. See Equation . *)
c2[v_] =
c2[v] = TableLowAlphv[[v — 3 + 1]];

(» ‘ActualE2[r_]’ is the actual rate of expansion of G.. See Section , *)
ActualE2[r_] := ActualE2[r] =0;

(» ‘K2’ is K(e,GL*)x*)
K2[v_] =
K2[v] = N[(1 +
RealAbs[ActualE [v] —
Subscript [E, 0]]
v]]) (RealAbs[(b2]
v+
Ceiling [(b2]
v] (a2[v] + 2 b2[v]))/((a2[v] + b2[v]) (a2[v] +
b2[v] + c2[v]))]) (1 + Round[a2[v]/b2[v]]))/((1 +
Round [b2[v]/c2[v]]) (1 4+ Round[a2[v]/c2[v]])) — b2[v]] +
b2[v]) 4+ (ActualE[v])];

v
]
(% ‘Mr’ is M(e,Gy). See Equation [154]x)

Mr = Table[N[LengthS1[r] (Kl1[r] — LengthS1[r])], {r, 3, g — 1}];

(* ‘Mv’ is M(e,G3*). See Equation [155[x)
Mv = Table [N[LengthS2[v] (K2[v] — LengthS2[v])], {v, 3, g — 1}];
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Table[Mr[[r]], {r, 1, q — 3}] (xList of walues in {M(e, G}), M(e,G}), -+, M(e,Giy)}*)

(*Output: {12.25, 375., 9760.67, 408447., 2.0647x10"7, 1.40901%10°9, 1.15881x10"11} %)

Table [Mj[[j]], {j, 1, a — 3}] (*List of values in {M(e,G3*), M(e,G}*), -+, M(e,G73)} *)

(% Output: {172.25, 2613.833, 59524.1, 2.24988+10°6, 1.05393+10°8, 7.04491%10°9, 5.50671+10°11} %)

Table [Mr[[k]]/Mj[[k]], {k, 1, a — 3}] (*List of values in {M(e,G})/ M(e,G}*), M(e,G})/ M(e, G}*),
-+, M(e, Glo) /M(e, Gig) 1} *)

(*Output: {0.0711176, 0.148495, 0.163978, 0.181541, 0.195905, 0.200004, 0.210435} %)

Differences |
Table [(Mr[[k]]/Mj[[k]])/Max[Mr[[k]], Mj[[k]]], {k, 1, g — 3}]]

(* Output: {—0.000857965, —0.0000521539, —2.67418%10°—6, —7.88305%10"—8,—1.83041x10"—9,
—2.80078+10"°—11} *)
Thus, using the outputs in Code 13, we assume M (e, G;‘l(k))/./\/l(e, G;*) ~ .25 for large k. Therefore, we must
find a way to “choose” between different families of bounded function’s graphs where their “measures” increase at
rates linear to one another. This is done using S(e, 7, v*, G5*) and S(e, r,v*, G;*) (Section|6.4.4)).

6.4.4. Motivation of S(g,r,v*,G**) and S(e,r,v*, GX*).

Part 1. Motivation for Definitions of S(e,r,v*,G%*) and S(e,r,v*, G5*)
Suppose:
S(e,r,v*,Gy) =inf ({|S' (5, GE)| 1 v € N, M(e,G*) > M(e,Gr) > v*} U {v*}) + v (166)

and:
S(e,r 0", Gy) = sup ({|S'(,Gy)| 1 v € Nyv* < M(e,GyY) < M(e,Gr) U {—v"}) +v (167)

where |S'(e, G)| and |S' (e, G}*)| are defined in Equation[149) M (e, G}) and M (e, G33*) is explained in Section
v* is a variable, and v is a constant.

Using the Motivation in Section when the “measure” of {G} : r € A(A)} increases at a rate linear
(Sectionmcrit B3) to that of{G** tv € A(A)}, there exists alinear r : N — N where M (e, G}) is proportional
to M(e, G)% ;) or M(e, G k is proportlonalto./\/l(e G3r) for large k. However, choosing 1 (k)—without trial
and error—requires deﬁmng (e,r,v*, G3*) (Equation 166) and S(e, r, v* G**) (Equatlon.'l.ﬁl).

Despite this, Equatlonsmand-do not solve the main issue in Section[6.4.3} we want to compare M (e, G}5)
and M(e, G7*) to choose a linear 71 : N — N, where M(e, G ) and M(e, G}~ k)) or M(e Gy, ) and M(e, G%¥)
are proportional, such that Equations 166 and 167 “picks” a unique functlon ceNC Where

8'(e, GR)

Tors ey~ c(1/k)
IS’ (e, Grl(k))‘

(168)

or:

|8/(€7 G:l(k‘))‘
5"(e, G
We also make sure S(e, r, v*, G&*) (Equation[166) and S(e, r, v*, G%*) (Equation|167)) compares M (e, Gx) and
M(e,Gy) to choose alinear 71 : N — N, where M(e, G}) < M(e, G5*), such that Equations[166|and[L67] “picks”
a unique function ¢ € N2 where:

~ c(k). (169)

m ~c(1/k) == (170)

or:

S (e, Gﬁl(k))|

SE oy~ ok =0, (171)
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Part 2. Motivation for v* and v
Note, the reason we add v* in S(e, r,v*, G5*) is when {|S’(e,G*)| : v € N,M(e,G%*) > M(e,Gr) > v*}
(Equation[166]) is empty, then:
inf({|S'(e,G;*)| : v € N, M(e,Gy) > M(e,Gr) > v* U {v*}) = ov*
rather than inf(f)) = +o00. More, in S(e, r, v*, G3*), when {|S' (e, G;*)| : v € N,v* < M(e,Gy*) < M(e,G))} is
empty, then:
sup({|8' (e, G;*)| 1 v € Nyv* < M(e,Gy) < M(e,G)} U{—0v*}) = —v*

rather than sup(f)) = —oo. This is important for the next section.

6.4.5. Motivation of c. When:
S'(e, G
c=1inf ¢]|1 —cq1]] : ¥(e > 0)I(c1 > 0)¥(r € N)I(v € N) 157, Gl —ci|| <e (172)
8" (e, G3)
Note 10 (Explanation oquuation. To obtain c in Equation c1 must satisfy the following:

(1) cq is positive
(2) cq satisfies (1) and the quantified statement in Equation
(3) ¢ satisfies (1) and ([2), and has the smallest absolute difference from 1.

then suppose:
{J(r) reN, |‘9(5G))| ~ c} . (173)

|Sl (6, G**
The choice function of Equationand 17541

J(r)
T 1 . sign(./\/l(a,G:))g(s,r,v*,G:*) —V(e,Gr,n)
hrenj(l)lpvlgnoo hiri)s;ip < ( S GO + 0 —c (174)
Sign(M (‘Ea G:))ﬁ(&, A G:*) o C—V(e, Gr.n) _
5(e, GY)[ + v -

liminf lim liminf
e—0 v*—o0 r—oo

sign(M(e, GY))S(e, k,v*,G*) v arm
— & G 175
<( S Gl + v ’ 1)

Sign(M (Ev G:))é(é—v T, G:*> _ C—V(57G1*,7n) =0
8'(e,GY)[ +v

is true for the following,

(1) The “measure” from {G} : r € A(A)} increases at a rate superlinear (Section criteria[l)) to that of
{Gy* : v € A(A)}, since sign(M (e, G})) = 0 (Section[6.4.3) and ¢ = 0 (Note
When c exists, the “measure” from {G} : r € A(A)} increases at a rate linear (Section[5.3.3)crit.[3) to that of
{Gs* :v e A(A)}. In addition,
(2) When [S'(=, G| < I8/, 05,

sign(M(e, G3))S (g, r,v*, GI¥)

lllglj(l)lpvll_r}loo hfrjris;ip ST GO+ =1/c (176)
S .. sign(M(e,Gr))S(e, 0", Grr)
h?i}élfyllinoo hrrggolf S G+ =0 (177)

Thus, to satisfy Equation[I74and Equation[I75] —V (¢, Gy, n) = —1and V (e, G}, n) = 1.

e—0

21 For the definitions of the notations lim sup and lim i(r)lf7 see Section W
E—r
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(3) When |S'(c, G2)| > |8'(,G%,,)I, then:

sign(M(e, G¥))S (g, k,v*, G2*)

limsup lim limsu = 400 178

meup, Hiz lim up SCGl o (178)
1 * * **

Bminf lim liminf SSMMECDISER VLG (179)

e—0 v*—o00 r—00 |S’(5, G:j)| + v
Hence, to satisfy Equation[174)and Equation[I75] —V (¢, G},n) = —1and V (e, G}, n) = 1.

6.4.6. Motivation of V(e,Gr,n).

Part 1. Summary

Let n € Nand suppose f : A C R" — R, where A and f are Borel.

Suppose Ax* € B(R") and f* € B(AY) (Section[2.3.4), (f*, Ax*) — (f, A) (Section2.3.2)), |S(e, G**)|
(Equation(149)), and we define the “measure” (Section [5.3.3)). Hence, whenever:

Vi(e, GE** m) = (180)

(max{|S(e, G}**) : ALY € BR™), fi*% € BAY), (£, A7) = (£, A)

* Kk A . .
G := graph(f.”") increases at a rate linear or superlinear >>

sup < sup ( sup
FERA \ AZ*EBRNM) \ fA*cB(AX*), (f5*,AL*)—(f,A)

to that of G}* := graph(f;*)})

then V (e, G%, n) is the same as:
V(e Gy n) = |_V1(€7G:**7n)—‘/|8/(57G:>‘ (181)

Note, V (e, Gy, n) is determined with respect to dimy (G}) (i.e., the Hausdorff dimension of G}) and n € N (i.e.,
the dimension of R™.)

Part 2. Breaking Down V (e, G}, n)

Let n € Nand suppose f : A C R™ — R, where A and f are Borel.
First, note when{*|

o F: A(A) — R (Section|2.3.1) is a function and the fixed rate of expansion

By (r) = { E(r) E(r)>0
1 E(r)=0
n € Nis the dimension of R"
d(X,Y) is the n-dimensional Euclidean distance between points X,Y € R”
D, =sup{d(z,y) : x,y € G := graph(f;)}
D! = limy_,0(D,44 — D,)/h is the generalized derivativ of D,
4/(D})* Dy #0
9, =
1 D, =0
Vol(B,,(C, 1)) is the volume of an n-dimensional ball of radius r centered at reference point C' € R"
sign(-) is the sign function
[-] is the ceiling function
|- | is the floor function
dimy (G?) is the Hausdorff dimension of the set G = graph(f*) C R**!
[| - || is the absolute value function
The following is shortened for brevity:
. dy = dy(GH, 1) = ||n — dimg (G2)]
o 5:=5(G5n) =1— 2dimg(GF)

n

o t1:=sign([dy/n])

22 Gee Note Case

23 For a definition of the notation @, see Section
E—r
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oty = sign([s})( H .
ds /n)sign(te+||D,Eq1(r)D,-
e D, — (Do, p, ) 2/ (r)D, |
e P(r) is the partial sum formula of ], _, (t1 + &%)
e Pi(r)=P (QTEl(r)(DT)Sig“‘E“))T(dZ/"’“‘S‘g“(E“m)
then when 4
V(e,Glon) = (152)

’V(de(l—sign(QrE(T)Dr))(m) (t2 + D, Py (r )/5-‘ /\S’ e, G|

V (e, Gx,n) can be broken down into the following;:

[(VOl(Bn(C,1))(Dr))" /e] /IS (e, G7) V(r € A(A))(dimu(GF) = n)
V(e,Gin) = K(m)< 1) )/5] /18 (e,G2)| ¥(r € A(A)) (dimn(GE) = 0) (183)
See Note [[1] Case [5 V(r € A(A))(dimu(Gy) € [0,n])

Note 11 (Explanation of Equation. Let n € N and suppose f: A CR™ — R, where A and f are Borel.
Suppose dimy (-) is the Hausdorff dimension and HY™50)(.) is the Hausdorff measure in its dimension on
the Borel o-algebra.

Note, we explain why we chose the following in Cases[1] [3, [3, and[§

[(Vol(B,(C.1))(D,)" [e] /IS (e, G}l

and:

K(W) (D! + 1)") /4 /1S (=, G7)|

While a simpler formula for V (e, G}, n) exists, using only Equation there is a reason we use a sophisticated
formula for V(e,G%,n) (Case @

In Case @ (md we take a continuous f, since this is the easiest way to visualize V (e, G%,n) (Equations
and . However, the function in Case @ is an exception and should be simple enough to visualize
Ve, Gr,n).

(1) Suppose n € N, A = R", and f : A = R is a continuous function. Moreover, suppose
E: A(A) —» R (Section[2.3.]) is a function and the fized rate of expansion.
(a) If E = 0, then G = graph(f) is bounded. Hence, HW™n(C)(Q) is finite, so (GF) =
(graph(f))ren is a family of bounded sets. In addition, {Ar :r € A(A)} is a family of
bounded sets and {f} : r € A(A)} is a family of bounded functions, since (f},Ar) — (f, A)
(Section where HEMu(AMA) (A(A)) is finite.
Therefore, V (e,Gr,n) can be any constant, for every r € A(A), n € N, and ¢ > 0. For
the sake of generalization, V (e, Gy, n) = [(Vol(B,(C,1))(D,))" /| /IS'(e,G)|. Notice,
V (e, G£,n) is constant, since D, is constant (p.
(2) Suppose neN, A=R", and f: A — R is a continuous function. If E > 0, then suppose:
) fr: A — R is a function
¢ 18 a non-constant indexed family (p. @)
*ire A(A)} = {Vol(B,(C,D,)) : r € A(A)} = {Vol(B,(C,1))(D,)™ : r € A(A)}
() ()forallxeA*
> € B(R") (Section[2.5.4) and frr e BA)
uk JA) = (f, A) (Sectzon
(2) {G2 v € A(A)} = {graph(f7) : r € A(A)}
(h) V(r e A4 ))(dimy(G7) = n)
(i) Since “the measure” (Section [5.5.1 Section of {Gy : v € A(A)} increases at a rate
linear and superlinear to that of {G3* : v € A(A)} = {graph(f;*) : v € A(A)} and the actual

(a
(b) D
(c) {
(d) f
(e) A
) (f5
g) {G}
h)
)

24 gee Note Case
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rate of expansion of {Gy : v € A(A)} (Section[5.4) is E(C, Gr) = DL /4, the largest |S' (s, G)|
(Equation[180) can be is:

[(Vol(B,, (01 (D))" /e

Hence, V(e,Gy,n) = [(Vol(B,(C, )" /e] /| S’ (e,G)|
(3) When A=Qand f: A—Risa functzon (Sectzon

1 ze{(2s+1)/(2t): s € Z,t eN,t #0} N (a,b)
f(x)_{() r&{(2s+1)/(2t) : s € Z,t € N,t #0} N (a,b) (184)

suppose E: A(A) = R is a function and the fized rate of expansion where E =0 and:
(a) fr: A, — Ris a function
(b) Dy =b—a (p.[{d)
(c) {A* cr € A(A) =N} = ({¢/rlrar! <e <brl}), oy = ({c/r!: (b= Dy)r! < e < brl})en
(d) fx(x) = f(z) for allmeA*
(e) A** € B(R") (Section[2.3.4)) and for e B(ALY)
) (2 ik JA) = (f, A) (Sectzon
(g) Smce “the measure” (Sectzo 1, Section[5.5.3) of (Gy) = (graph(f}))ren increases at a
rate linear and superlinear to that of (G¥)pen = (graph(f *))ven, the largest |S'(e, GY)| can
be (Equation[180) is:
(D! +1) fe].
Hence, V(e,Gy,n) = [(Dyrl+ 1)) /e] /IS (e, Gy)|
(h) We can generalize (Jg) to an arbztmry set A, where n € N, dimg(A) =0, and A CR™ such
that the following is true:
(1) V(r € A(A))(dimg (G}) = 0)

(i) When n € N, then “{(D,r! +1)” in [(D,r!+1)/e]| can be estended to (D,r!+1)"

(ii) When n € N, we want a “portion” of (Dyr! + 1)" for each r € A(A) contained in the
n-dimensional ball Vol(B,,(C,D,)) := Vol(B,(C,1))(D,)"™. (Note, “Vol(B,(C,1))(Ds)™”
is from the family of n-dimensional balls {Vol(B,(C,1))(D,)" : r € A(A)}). Hence, we
divide (Dyr! + 1)™ by Vol(B,,(C,1)): i.e., the largest |S' (e, GF)| can be is

(e @) /|

Hence, V(e,Gt,n) = K(m) (D,r!+1) )/5—‘ /S'(e,GF)

(4) Whenn € Nand f : A CR™ — R is a continuous function, where A and f is Borel, dimg(A) = 0,
V(r € A(A))(dimp(GF) =0) and E : A(A) — R is a function and the fized rate of expansion
such that E(r) > 0:

) fr: AF — R is a function

D, is a non-constant indexed family (p.

re A}

fr(x) = f(x) for all x € Af
Ar € B(R™) (Section[2.3.4) and f;* € B(AL)
(fo5 Ay) = (f,A4)

(g Since “the measure” (Section [5.3.1, Section [5.5.3) of {G: : r € A(A)} = {graph(f;}) :
r € A(A)} increases at a rate linear and superlmear to that of {Gy* v € .A(A)i

{graph(f;*) : v € A(A)} and the actual rate of expansion of {Gr :r € A(A)} (Section
is E(C,Gr) = D! /4, the largest |S' (e, GF)| can be (Equation |180) is:

(e ) @) /e|

Hence, V(e,G%,n) = [((m) D.rl+1) ) /8—‘
(5) For the other cases, besides Case @ @ and' where the following is shortened for brevity:
o dy :=dy(Gr,n) = ||n — dimu(G)]|
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e s:=5(Gf,n) =1— 2dimu(G})
o t; :=sign(|d;/n])
e ty :=sign([s])

49

we want a formula generalizing Cases[1{f), based on Equation[I80, where we use the following:

(a) The function and fized rate of expansion E : A(A) — R (Section[2.5.1))

0 V(r € A(A)) (dimu(G}) < n)
(b) t; =sign(|di/n]) =41 V(r € A(A))(dimg (G}) = n)
sign(|d1/n]) Otherwise
1 V(r € A(A))(0 < dimg(G)) < n/2)
. _Jo V(r € A(A))(n/2 < dimu(G}) < n)
(¢) tz =sign([s]) = { _, V(r € A(A))(dimp (GF) z n)
sign([1 — 2dimu(G})]) Otherwise
Vol (B, (C, 1)) di=n,d2 =0
Vol(Bg, (C,1))
() e = | YVelBae 1) dy =0, dz—n
ol(Ba,(C,1))/Vol(Ba,(C,1)) Otherwise

n) (Case|l] and @)
0) (Case @ and

(e) P(T) = H;Zl t1 + kS =

Tl 14k =1 ¥(r € A(A)(dimu(G})
T, k= (")°  ¥(r € A(A))(dimu (G})

Il t1 +k° Otherwise
(4/D'(r)*)(D’(r)/4)(Dy) := D:/D;  D;. #0
f FE D, = .

(f) ©,E1(r)D, {(1)(1)Dr =D, D —0 (p- 146

(g) Pl(’r) _ P(DT,EI (’r) (Dr)sign(E(T))lr(dz/n)(lfsign(E(r)))) _
P(1) V(r € A(A)) (dimy(Gy) = n, E(r) =0) (Case
P(D.,./D.) V(r € A(A) (dimu(G}) = n, E(r) > 0) (Case[2)
P((1/D.)r) V(r € A(A)) (dimu(G}) =0, E(r) =0) (Case[3)
P(D,) V(r € A(A)) (dimu(G}) =0, E(r) > 0) (Case[])

P(®.E1(r) (D’y.)sign(E(T')) T(dz/n)(lfsigﬂ(E(T)))

) Otherwise (Case@
(h) 9dz2(1—sign(D, E1(r)D,) —

1 ) Y(r € A(A))(dimu(G}) =n) (Case and@
gn(1—sign(Dr)) ) V(r € A(A))(dimn(GY) = 0, E(r) = 0) (Case[3)
n(1—<ien(Dr/Dy)) Y(r € A(A))(dimu(G}) =0, E(r) > 0) (Case[f))
2d2(1=sign(®rE1(MDr)  Otherwise (C’ase@
(DDT.)O. =1 V(r € A(A))(dimy (G}) = n) (Case and@
(i) D, = (Dp, )siEnHIBr 1D Y(r € A(A))(dimu(G) = 0, E(r) = 0) (Case[3)
! T (DDT/D,T)S'gn(1+HDH> Y(r € A(A))(dimu(GE) = 0, E(r) > 0) (Case[4)

(Do, 5, (b, ) @2/ M=EG2H1DrEL DD Otherpise (Case[F)

Hence, we use C’ase@ @— to compute:
Vie,Gr,n) =

’7<2d2(lsign(’DTE(r)Dr)) (m) (tz + DrPl(r))"> /sw /\S’(s, G|

7. QUESTIONS

(1) Does Section[6answer the leading question in Section[3.]]
(2) Using Theorem[9] when f is defined in Section[2.1] does E[f;] have a finite value?
(3) Using Theorem[9] when f is defined in Section[2.2] does E[f;] have a finite value?
(4) If there is no time to check questions and see Section

8. APPENDIX OF SECTION [5.3.1]

8.1. Example of Section |[5.3.1} step Suppose
(1) A=R
(2) When defining f : A — R:
1 x <0
flz)=4¢ -1 0<z<05
0.5 05z

(185)

(186)
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) {Gr:re A(A) =R} ={{(z, ff(x): —r<z<r}:re A(A) =Rt} =
{{(z, f(x): —r <z <r}:re A(A) :=RT}

Then one example of C(v/2/6,G¥, 1), using Sectionstep (where GT = {(z, f(z)) : =1 <z < 1})is:

6 6 - 6 6 - 6
{(x,fm) e 4ﬁ_6},{(w,f(z)) AEE s 5“56‘6},{<m,f<w>> S s 6“56‘6} as1)

{{(m,f(z)):71§a3< ﬁiﬁ},{(m,f(z)): V26 <z < 2\/576},{(z,f(x)):2ﬁ76 <z< 3\/576}

6 - 6
{(w,ﬂw)):wi_ﬁ <u< 7\/5_6},{(90,1%1)): V226 s 8“5‘6},{@,)0(9@)):8“56‘6 <z< gﬁ‘G}}

6 - 6 6 - 6 6

Note, the length of each partition is v/2 /6, where the borders could be approximated as:

{H{z, f(®): =1 <z < =764}, {(z, f(z)) : —.764 < x < —.528} ,{(=, f(z)) : —.528 < =& < —.293}
{(z, f(z)) : =293 <z < —.057}, {(=, f(z)) : —.057 <z < .178} ,{(=z, f(x)) : .17T8 < z < .414} (188)
{(z, f(z)) : 414 <z < .65}, {(z, f(z)) : .65 <z < .886},{(z, f(z)) : .886 < = < 1.121} }

which is illustrated using alternating orange/black lines of equal length covering G7 (i.e., the black vertical lines
are the smallest and largest z-cooridinates of G7).

FIGURE 3. The alternating orange & black lines are the “covers” and the vertical lines are the
boundaries of G7.

05

-0!5 0 05

-0:5

(Note, the alternating covers in Figuresatisfy step (1)) of Section[5.3.1} because the Hausdorff measure in its
dimension of the covers is v/2/6 and there are 9 covers over-covering G*: i.e.,

Definition 8 (Minimum Covers of Measure ¢ = /2/6 covering G%}). We can compute the minimum
covers of C(v/2/6,G%, 1), using the formula:

[H A G(G)/ (v2/6)]

where [H3m(OD (G1)/(v/3/6)] = [Length([—1, 1])/(v3/6)] = [2/(v/2/6)] = [6v/3] = [6(1.4)] = [8+.4] = 9). Note
there are other examples of C(v/2/6, G}, w) for different w. Here is another case:
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FIGURE 4. This is similar to ﬁgure except the start-points of the covers are shifted all the
way to the left.

0.5 - —

-0.5 0 0.5

which can be defined (see Equation[187]for comparison):
{{(z-,f(r)) EELALPTE 6*8‘/5},{<a:,f<z>> R 6*7ﬁ},{<z,f<z>> T2 e 6*6“5}

6 - 6 6 - 6 6 - 6
{(sz(z)) O 6‘65“5},{(1:&@)) O ﬁ—gﬂ},{@,m» O 6‘5’“5} (159)
{(w,f(w)):6_§ﬂﬁw< 6-62“5},{@},:@»:6—5@“ G‘Gﬁ}{w,f@c)):S‘Gﬂsml}}

In the case of G}, there are uncountable different covers C(1v/2/6, G, w) which can be used. For instance, when
0<a<(12-9v2)/6 (ie.,w = a+ 1) consider:

{{(I,f(m)):a71+a§z<a+\/5676}7{(ny(z)):a+\/5676 §z<a+2\/5676},{(z,f(z)):a+2\/§676 §z<a+3\/§676}

{(mf(m)):aﬁﬁ”’ gx<a+4ﬂ*6},{<z,f<w>>:a+NE*'"’ <z<at’ 2*6},
6 6 6 6
{(uf(z)):wsﬁ‘ﬁ sz<a+6ﬂ_‘6},{(w,f(z>>:a+6ﬂ_‘6 sw<a+”§,‘6} (190)
6 6 6 6
{(z,f(z»:mwi"s 3z<a+Sf"a},{(z,f(z)):wsﬁﬁ’ﬁ sIswgﬁG’G}}

When o = 0and w = 1, we get ﬁgureand when o = (12 — 9v/2) /6 and w = (18 — 9v/2) /6, we get ﬁgure

8.2. Example of Section [5.3.1} step . Suppose:
(1) A=R
(2) When defining f : A — R: i.e.,

1 z <0
flz)=¢ -1 0<2<05 (191)
05 05<ux

3) {Gr:re A(A) =R} ={{(z, ff(x)): —r<z<r}:re A(A) =R} =
Hlz, f(x):—r<z<r}:re A(A) =RT}
(4) Gl ={(z, f(z)): -1 <z <1}
(5) C(v2/6,G*, 1), using Equation and Figure which is approzimately
{H{z, f(@): =1 <z < =764} , {(=, f(z)) : —.764 < & < —.528} ,{(=, f(z)) : —.528 < = < —.293}
{(z, f(z)) : —.293 <z < —.057}, {(=, f(z)) : —.057 <z < .178} ,{(=z, f(x)) : .17T8 < z < .414} (192)
{(z, f(@)) : 414 <z < .65}, {(=, f(z)) : .65 <z < .886},{(=, f(z)) : .886 < x < 1.121} }

Then, an example of S(C(v/2/6,G%, 1), 1) is:
((=.9,1), (—.65,1), (—4,1), (—.2,1), (.1, 1), (.3, —1), (.55, .5), (.75, .5), (1, .5)} (193)

Below, we illustrate the sample: i.e., the set of all blue points in each orange and black line of C(ﬂ/G, Gy, 1)
covering G7:



52

BHARATH KRISHNAN

F1cURE 5. The blue points are the “sample points”, the alternative black and orange lines are
the “covers”, and the red lines are the smallest & largest z-coordinates of G7.

Note, t

05 o

0.5

here are multiple samples that can be taken, as long as one sample point is taken from each cover in

C(V2/6,G;,1).
8.3. Example of Section |[5.3.1} step Suppose

(1) A=R
(2) When

defining f : A — R:
1 <0
flz)y=4¢ -1 0<z2<05 (194)
0.5 05<x

3) {Gr:re A(A) =R} ={{(z, ff(x): —r<z<r}:re A(A) =R} =
Hz, f(@): —r<z<r}:re A(A) =R"}

(4) GT ={(z, f(z)): -1 <z <1}

(5) C(v2/6,G%,1), using Equation and Figure is approx.

{Hz, f(@): —1 <z < =764}, {(z, f(z)) : —.764 <z < —.528} ,{(=, f(z)) : —.528 < = < —.293}
{(z, f(z)): =293 < 2 < —.057},{(z, f(x)) : —.057 <z < .178} ,{(z, f(z)) : .178 <z < .414} (195)
{(z, f(x)) : 414 <z < .65}, {(=, f(z)) : .65 < = < .886},{(=, f(z)):.886 < = < 1.121} }

(6) S(C(v/2/6,G7,1),1), using Equation[193} is:

Therefore

{(=.9,1), (—.65,1), (—4,1), (—.2,1), (.1, =1), (.3, —1), (.55, .5), (.75, .5), (1,.5)} (196)

, consider the following process:

8.3.1. Step[dd 1S(C(v2/6,G7,1),1) is:

{(—.9,1),(—.65,1),(—.4,1),(=.2,1), (.1, -1), (.3, 1), (.55, .5), (.75, .5), (1, .5)} (197)

suppose xg = (—.9,1). Note, the following:

(1)
(2)
3)
(4)

x; = (—.65,1) is the next point in the “pathway” since it’s a point in S(C(v/2/6, G%, 1), 1) with the
smallest 2-d Euclidean distance to xq instead of xg.

Xo = (—.4,1)isthethird point sinceit’s apoint in S(C(v/2/6, G}, 1), 1) with the smallest 2-d Euclidean
distance to x; instead of xg and x7.

x3 = (—.2,1) is the fourth point since it’s a point in S(C(v/2/6,G%,1),1) with the smallest 2-d
Euclidean distance to x5 instead of xg, x1, and xs.

we continue this process, where the “pathway” of S(C(v/2/6,G%,1),1) is:

(=.9,1) = (—=.65,1) = (—.4,1) = (=.2,1) — (.55,.5) — (.75,.5) = (1,.5) — (.3,=1) = (.1, 1) (198)

Note 12. If more than one point has the minimum 2-d Fuclidean distance from xq, X1, X2, etc. take all
potential pathways: e.g., using the sample in Equation if xg = (—.65,1), then since (—.9,1) and (—.4,1)
have the smallest Fuclidean distance to (—.65,1), take two pathways:

(—.65,1) = (—.9,1) = (—.4,1) = (—.2,1) — (.55,.5) = (.75,.5) — (1,.5) — (.3, —1) — (.1,—1)
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and also:
(—.65,1) = (—.4,1) = (—.2,1) = (—.9,1) — (.55,.5) — (.75,.5) — (1,.5) — (.3,—-1) — (.1,—1)

8.3.2. Step Bﬂ Next, take the length of all line segments in each pathway. In other words, suppose d(P, Q) is the
n-th dim. Euclidean distance between points P, Q) € R™. Using the pathway in Equation|[198] we want:

{d((=.9,1), (—.65,1)),d((—.65,1), (—.4,1)),d((—.4, 1), (—.2,1)),d((—.2,1), (.55, .5)), (199)
d((.55,.5), (.75,.5)), d((.75, .5), (1,.5)),d((1,.5), (.3, 1)), d((-3, —1), (.1, 1))}

Whose distances can be approximated as:

{.25,.25,.2,.901389, .2, .25, 1.655295, .2}

Also, wesee the outliers [9] are .901389 and 1.655295 (i.e., notice that the outliers are more prominent for e < v/2/6).
Therefore, remove .901389 and 1.655295 from our set of lengths:

{.25,.25,.2,.2,.25, 2}

This is illustrated using;:

FIGURE 6. The black arrows are the “pathways” whose lengths aren’t outliers. The length of
the red arrows in the pathway are outliers.

x0=(2.9,1) AN
- \ i

0:5 /

Hence, when xg = (—.9, 1), using Section step[p|& Equation[I97] we note:
L((—.9,1),S(C(V2/6,G%,1),1)) = {.25,.25, .2, .2, .25, .2} (200)

8.3.3. Step[Jd To convert the set of distances in Equation into a probability distribution, we take:

> r=.25+.25+.24+.2+.25+.2=135 (201)
x€{.25,.25,.2,.2,.25,.2}

Then divide each element in {.25,.25,.2,.2,.25,.2} by 1.35
{25/(1.35),.25/(1.35),.2/(1.35),.2/(1.35),.25/(1.35),.2/(1.35)}
which gives us the probability distribution:
{5/27,5/27,4/27,4/27,5/27,4/27}

Hence,

P(L((—.9,1),S(C(v/2/6,G},1),1))) = {5/27,5/27,4/27,4/27,5/27,4/27} (202)
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8.3.4. Step[Jd Take the shannon entropy of Equation[202

Z —zlogy, x = Z —xlogy, x =
z€P(L((—.9,1),5(C(v2/6,G%,1),1))) x€{5/27,5/27,4/27,4/27,5/27,4/27}

— (5/27) logy(5/27) — (5/27) logy(5/27) — (4/27) logy (4/27) — (4/27) logy (4/27) — (5/27) logy (5/27) — (4/27) logy (5/27) =
— (15/27) logy(5/27) — (12/27) logy (4/27) ~ 2.57604

We shorten E(P(£((—.9,1),S(C(v/2/6,G*,1),1)))) to E(L((—.9,1),S(C(v/2/6,G%,1),1))), giving us:

E(L((—.9,1),5(C(v2/6,G7,1),1))) =~ 2.57604 (203)
8.3.5. Step[Jd Take the entropy, w.r.t. all pathways, of the sample:
{(-=.9,1),(—.65,1),(—.4,1),(-.2,1),(.1,-1),(.3,-1),(.55,.5), (.75, .5), (1,.5)} (204)
In other words, we’ll compute:
E(L(S(C(v2/6,G7,1),1))) = sup E(L(xo, S(C(V2/6,G7,1),1)))

x0E€S(C(V2/6,G%,1),1)

We do this by repeating SectloSectlon“for different xo € S(C(v/2/6,G%,1),1))) (i.e., in the equation

with multiple values, see note|12))

E(L((—.9,1),S(C(V2/6,G5,1),1))) ~ 2.57604 (205)
E(L((—.65,1),S(C(v2/6,G},1),1))) ~ 2.3131,2.377604 (206)
E(L((—4,1),8(C(V2/6,G%,1),1))) ~ 2.3131 (207)
E(L((—.2,-1),S(C(V2/6,G7,1),1))) ~ 2.57604 (208)
E(L((—.1,-1),8(C(Vv2/6,G%,1),1))) ~ 1.86094 (209)
E(L((—.3,-1),8(C(V2/6,G%,1),1))) ~ 1.85289 (210)
E(L((.55,.5),S(C(v2/6,G%,1),1))) ~ 2.08327 (211)
E(L((.75,.5),S(C(V2/6,G%,1),1))) ~ 2.31185 (212)
E(L((1,.5),8(C (\/5/6,G1,1),1)))z2.2622 (213)

Hence, since the largest value out of Equation|205) is 2.57604:

E(L(S(C(V2/6,G%,1),1))) = sup E(L(x0,S(C(V2/6,G75,1),1))) ~ 2.57604

x0€8(C(v2/6,G1,1),1)
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