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Abstract. Let X ⊆ R and Y ⊆ R, where f : X → Y is a function. We want to find a measure of

discontinuity of f between zero and positive infinity, where the more “disconnected” the graph of f , the
larger the measure. Note, the measure continuity is slightly different, where other properties such as the

derivative and integral must exist. The measure of the discontinuity of f is defined w.r.t. an arbitrary set
X1 ⊆ R. For example, when f is continuous, its restriction on X1 is continuous (i.e., X1 is dense in X).

Hence, the restriction should have zero measure of discontinuity. In addition, when the extension of f is

defined on X1, and the Hausdorff dimension of X1 is greater than the dimension of X, the measure of
discontinuity should be positive infinity. We define the measure by “averaging” the number of times, minus

one, an arbitrary vertical line intersects the topological closure of the graph f on X ∩X1 with respect to

the measure of continuity of f on X1.

1. Motivation

Let X ⊆ R and Y ⊆ R be arbitrary sets, where f : X → Y is a function. We want a measure of discontinuity
of f w.r.t. an arbitrary set X1 ⊆ R, where the more “disconnected” the graph of f on (X ∩X1)×Y , the larger
the measure. Specifically, the measure should range1 from zero to positive infinity. In particular, the measure
should be zero when f is continuous on X ∩X1 and positive infinity when the graph of f is “completely
disconnected” on (X ∩X1)× Y .2 Note, this is measured with the d-dimensional Hausdorff measure on the
Borel σ-algebra, which we denote Hd(·) such that d ∈ [0, 1] and dimH(·) is the Hausdorff dimension.

To understand discontinuity, we need to understand continuity. Informally, f is continuous, when all
points in the subset of the graph of f—which cannot be approximated “infinitely close” using points on a
positive measure subset of the graph—have zero measure. This means a discrete function, with a non-empty
domain, is non-continuous. However, a function whose graph has a closure3, which is a function defined on
the smallest interval containing the original domain, is continuous. (Note, in Section 2.1, we define a rigorous
definition of continuity.)

In topology, when the function f is continuous, its restriction to a set dense in X is continuous and has
to have zero measure of discontinuity: the domain X ′ = X ∩ X1 of the restriction f |X′ has a Hausdorff
dimension less than or equal to the dimension of X. Thus, when dimH(X1 ∩X) < dimH(X), the measure
of discontinuity should be zero. In contrast, when dimH(X1) > dimH(X), the measure should be positive
infinity: e.g., the function f is not continuous on the domain of its extension F : X1 ⊃ X → Y , since X1 \X
has a positive Hausdorff measure in the dimension of X1. Thus, we are left with dimH(X ∩X1) = dimH(X),
where the measure can be any number in [0,+∞] based on intuitive reasoning. (In Section 2.2, we explain
this paragraph in more detail.)

In Section 3, we attempt to define a measure which satisfies the previous paragraph and the criteria in
Section 2.2. The measure is quite long and might not be useful for “simple” functions; however, it might
have use for indirect and sophisticated functions. Consider, for example:

Let f : R → R and q : {0, 1, 2, 3} → {0, 1, 2, 3}, where q = {(0, 1), (1, 3), (2, 0), (3, 2)}.
Suppose x ∈ R, where the base 4 expansion of x = a1a2 . . . am.am+1am+2 . . . such that a1
is the left most non-zero digit and am+j , for some j ∈ N ∪ {+∞}, is the last non-zero digit
before a trail of zeros or else j = +∞.

Hence, for all i ∈ N, ci = mod(
∑i

p=1 mod(p·qp(ai), 4), 4) and f(x) = c1c2 . . . cm.cm+1cm+2 . . . .

Date: August 1, 2025.
1The measure in Section 3.1, page 4 is rational when X ∩X1 is bounded and real when X ∩X1 is unbounded
2See Section 4.4.1, page 33, where (X ∩X1)× Y = R× R
3 topological closure
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A simpler sophisticated example is the following:

Suppose f : Q → R. When x = p/q for all coprime integers p, q ∈ Z, then f(p/q) = (p+q)/(pq)

However, direct and applicable versions can be found in Section 4.6 and Section 4.7 (p. 33).
In Section 3.3, we provide explicit examples which hint that we have some idea behind the construction of

our measure in Section 3.1. This does not fully prove that we found a measure which satisfies all the criteria,
but the measure in Section 3.1 can be used to find a simpler version.

2. Preliminaries

Note, the definition of continuity is:

2.1. Definition of Continuity. Suppose X ⊆ R and Y ⊆ R are arbitrary sets. The continuity of f : X → Y
at x0 ∈ X means that for every ϵ > 0, there exists a δ > 0 such that for all x ∈ X \ {x0}

|x− x0| < δ implies |f(x)− f(x0)| < ϵ

Hence, f is continuous in arbitrary set X1 ⊆ R, where:
(1) dimH(·) is the Hausdorff dimension
(2) HdimH(·)(·) is the Hausdorff measure in its dimensions on the Borel σ-algebra

whenever:

CM(f,X1) = HdimH(X1)(X1 \X) = 0

2.1.1. Example 1 of Definition. When X = Q, Y = R and f(x) = x for all x ∈ Q, f is continuous on X1 = Q
but discontinuous on X1 = R.

2.1.2. Example 2 of Definition. When X = N, Y = R and f(x) = x for all x ∈ N, f is not continuous on
X1 = N, X1 = Q, and X1 = R.

2.1.3. Example 3 of Definition. When X = R, Y = R and f(x) = x for all x ∈ R, f is continuous on any
dense subset X1 of R

2.2. Criteria For Measure.

2.2.1. Explanation. Suppose U ⊆ X is an arbitrary set, and f |U is a restriction of the function f : X → Y .
Let F : V → Y is an extension of the function f , where X ⊆ V is an arbitrary set and F |X = f

In topology, when the function f : X → Y is continuous, its restriction is continuous and should have
zero measure of discontinuity. (This could be proven with Section 2.1, where CM(f, U) = 0.) Hence, since
the domain U of the restriction f |U has a dimH(U) less than or equal to dimH(X), the measure of the
discontinuity of f |U should be zero. In contrast, when V ⊇ X is an arbitrary set and dimH(V ) > dimH(X),
the measure should be positive infinity: e.g., the function f is not continuous in its extension F : V → Y
since CM(f, V ) > 0. Thus, we are left with either dimH(U) = dimH(X) or dimH(X) = dimH(V ), where the
measure can be any number in [0,+∞].

Note, when dimH(U) = dimH(X) or dimH(X) = dimH(V ), we use intuition to justify how a measure of
discontinuity should be defined. (Intuition is frowned upon; however, some intuition has to be used.) In the
case of this paper, when f is continuous, the closure4 of the graph of f is one function continuous on R.5
Hence, an arbitrary vertical line intersects with the closure once and the measure of discontinuity should be
zero. Similarly, the closure of the graph of the Dirichlet function is two functions continuous on R,5 where an
arbitrary vertical line intersects the closure twice. (In Sections 4.6 and 4.7, on page 33, we show that not all
vertical lines intersecting the domain of f have to intersect the closure the same number of times.) Hence, we
“average” the amount of times minus one that the vertical lines intersect the closure of the graph, w.r.t. the
measure of continuity in Section 2.1. (The intuition is further explained below.)

4 topological closure
5See Section 4.1, page 33, where X1 = R
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2.2.2. Criteria. Suppose X ⊆ R and Y ⊆ R are arbitrary sets, where f : X → Y is a function. Note, dimH(·)
is the Hausdorff dimension, X1 ⊆ R is an arbitrary set, and X ′ = X ∩X1.

The measure of discontinuity of f on X1 should range from zero to positive infinity, where:

(1) The more “disconnected” the graph of f on X ′ × Y , the higher the measure of discontinuity.
(2) When X ∩X1 is empty, the measure is zero, regardless of dimH(X1) and dimH(X ∩X1)
(3) When the closure of the graph of f |X′ is empty but X ∩X1 is non-empty, the measure is +∞ regardless

of dimH(X1) and dimH(X ∩X1)
(4) When the function is continuous on X1,

6 the measure is zero.
(5) When f |X′ is “hyper-discontinuous” (Section 4.3, page 33), the measure is positive infinity.
(6) When the closure of the graph of f can be split into a minimum of n functions continuous on a positive

measure subset X ⊆ X1 (Section 4.2, page 33) such that every vertical line, where their x-intercept is an
element of X ∩X1, intersects the closure m to n times (m < n):
(a) If dimH(X1 ∩X) < dimH(X), the measure is a number between m− 1 and n− 1, and corresponds

to the weighted average D(f) (Equation 1) where:
• the variable c is the number of the times the vertical line intersects the closure with respect to
its x-intercept

• lim supj→∞ X′
j = lim infj→∞ X′

j = X ′ (i.e., the set theoretic limit7) such that 0 < HdimH(X′)(X′
j)

< +∞ for all j ∈ N
• the arbitrary set Xc ⊆ X ∩X1 has the largest Hausdorff measure in the Hausdorff dimension

of X ∩X1, such that the vertical line for all x ∈ Xc intersects the closure c times (m ≤ c ≤ n)

D(f) = lim
(a,b)→(−∞,∞)

lim inf
j→∞

n∑
c=m

(c− 1) ·HdimH(X′)(X′
j ∩Xc ∩ (a, b))

HdimH(X′)((X ∩X′
j ∩X1) ∩ (a, b))

 (1)

= lim
(a,b)→(−∞,∞)

lim sup
j→∞

n∑
c=m

(c− 1) ·HdimH(X′)(X′
j ∩Xc ∩ (a, b))

HdimH(X′)((X ∩X′
j ∩X1) ∩ (a, b))

 (2)

(b) If dimH(X1 ∩X) = dimH(X), the measure is a number between m− 1 and n− 1, and corresponds
to the weighted average D(f).

(c) If dimH(X1) > dimH(X), the measure is positive infinity
(7) When the graph of f is dense in the closure of X × Y , where we remove the subset of the graph of f

with zero Hausdorff measure in its dimension and are left with the minimum of n function continuous
on X1:

6

(a) If dimH(X1 ∩X) < dimH(X), the measure is less than or equal to n− 1
(b) If dimH(X1 ∩X) = dimH(X), the measure is n− 1
(c) If dimH(X1) > dimH(X), the measure is positive infinity

(8) When f is everywhere surjective (Section 4.4, page 33), where its graph has zero Hausdorff measure in
its dimension, the measure is +∞.

2.2.3. Question. Is there a measure of discontinuity that gives what I want? What applications can this
measure have?

3. Possible Answer To Section 2.2.2

In Section 3.1, we define a measure that satisfies the criteria in Section 2.2.2; however, we need direct evi-
dence. We begin by explaining our motivations for the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)),
and C0(d1, ℓ,X

′(a, b)) defined within the measure of discontinuity (eq. 3-4). In Section 3.2, we use examples
to explain why we chose the measure. The evidence is presented in Section 3.3.

6See Section 4.1, page 33, where X1 is an arbitrary set
7See Section 4.5, page 33
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3.1. Measure. Suppose,

• X ⊆ R, X1 ⊆ R, and Y ⊆ R are arbitrary sets
• f : X → Y is a function
• d ∈ [0, 1]
• Hd(·) is the d-dimensional Hausdorff measure on the Borel σ-algebra
• dimH(·) or d′(·) is the Hausdorff dimension
• d1 = dimH(X1)
• X ′ = X ∩X1

• X ′ ∩ (a, b) = X ′(a, b)

• z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

Motivation of z(ε,X ′(a, b)).
The motive behind z(ε,X ′(a, b)) is to equal ε, when either X ′(a, b) is the empty set or
dimH(X1) > dimH(X). In addition, z(ε,X ′(a, b)) is equivalent to 1/ε, when X ′(a, b) is
non-empty and dimH(X ∩ X1) ≤ dimH(X). Note, limε→0 ε = 0 and limε→0 1/ε = +∞.
(We do not compute either limits until Equation 3 page 5).

• lim supj→∞ Xj(a, b) = lim infj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit8) such that 0 <

Hd1(Xj(a, b)) < +∞ for all j ∈ N
• R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}
Motivation of R(Xj(a, b)).

The motive behind R(Xj(a, b)) is to equal a finite number, when dimH(X∩X1) ≤ dimH(X),
such that the closure of the graph of f can be split into c functions continuous on a positive
measure subset X ⊆ X1

9. Otherwise, we want R(Xj(a, b)) = inf(∅) = +∞ is necessary for
dimH(X1) > dimH(X).

• | · | is the absolute value function

• r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

Motivation of r(ε,X ′(a, b)).
The motive behind r(ε,X ′(a, b)) is to equal 1/ε, when eitherR(Xj(a, b)) = +∞, the function
f : Q∩ [0, 1] → R is hyper-discontinuous10 or the map f : X ′ → Y is everywhere surjective11,
where its graph has zero Hausdorff measure in its dimension. (Note, limε→0 1/ε = +∞,
which we do not compute until Equation 3 page 5.) For instance, consider Section 4.3.1
and Section 4.4.1 on page 33.

• G(X ′(a, b)) is the graph of f |X′(a,b)

• lim supj→∞ Gj(X
′(a, b)) = lim infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) (i.e., the set theoretic limit8) such

that 0 < Hd1(Gj(X
′(a, b))) < +∞ for all j ∈ N

• h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

Motivation of h(ε,X ′(a, b)).
The motive behind h(ε,X ′(a, b)) is to equal 1/ε, whenX is empty or the function f : X ′ → Y
is everywhere surjective11, such that its graph has zero Hausdorff measure in its dimension.
Note, limε→0 1/ε = +∞, which we do not compute until Equation 3 page 5.

• Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
• Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

8See Section 4.5, page 33
9See Section 4.2, page 33
10See Section 4.3, page 33
11See Section 4.4, page 33
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• G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b)) \G0(d1, X

′(a, b))
• #| · | is the counting measure

• C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

Motivation of C(X).
The motive behind C(X) is to equal:

– 1/ε, when X is empty
– 1/ε, when dimH(X1) > dimH(X)
– A finite value, when dimH(X) = dimH(X ∩X1), such that the closure of graph(f)

can be split into finitely many functions continuous on a positive measure subset
X ⊆ X1

12

– Positive infinity, when the map f : X ′ → Y is everywhere surjective13, where its
graph has zero Hausdorff measure in its dimension.

• ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b)
• C0(d1, ℓ,X

′(a, b)) = inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G0(d1, X
′(a, b)) ∩ ℓ(X ′(a, b))

• When defining:
– lim supj→∞ Xj(a, b) = lim infj→∞ Xj(a, b) = X ′(a, b) (i.e., the set theoretic limit8) such that

0 < HdimH(X′)(Xj(a, b)) < +∞ for all j ∈ N
– M(ε, d1, ℓ,X

′(a, b)) = z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b)) · h(ε,X ′(a, b))

Motivation of M(ε, d1, ℓ,X
′(a, b)).

See Section 3.2 and Section 3.3 for examples and explanations. Note, limε→0

M(ε, d1, ℓ,X
′(a, b)) is the same as the column limε→0(z · r · h · C0) in Table 1.

Mj(a, b, d1, t) = (3)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

)}))
max{1/t,HdimH(X′)(Xj(a, b))}


Dd1

is the d1-dimensional measure of discontinuity (when the limit exists)

Dd1
(f) = lim

(a,b)→(−∞,∞)

(
lim
t→∞

(
lim inf
j→∞

Mj(a, b, d1, t)
))

(4)

= lim
(a,b)→(−∞,∞)

(
lim
t→∞

(
lim sup
j→∞

Mj(a, b, d1, t)
))

(5)

3.1.1. Note. (If there exists j ∈ N, where HdimH(X′)(Xj(a, b)) = +∞, replace HdimH(X′) with the generalized

Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)

3.2. Explanation of Measure. In Section 3.2, we give examples of f that satisfy the criteria in Section
2.2.2, applying the measure of discontinuity to all examples in Section 3.3.

3.2.1. Summary of Cases. In Table 1, we visualize the computation of the measure of discontinuity Dd1
(f) for

all the cases of f in Section 3.3. The table contains the output of each component of Mj(a, b, d1, t) (Equation
3, pg. 5) which is used to compute Dd1(f) in the last column.

Table 1: Visualization for Computing The Measure of Discontinuity. See
Section 3.1. Note, X′ = X ∩X1 and X′(a, b) = (X ∩X1) ∩ (a, b)

12See Section 4.2, page 33
13See Section 4.4, page 33
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f : X → Y d1 dimH(X) z(ε,X′(a, b)) r(ε,X′(a, b)) h(ε,X′(a, b)) C0(d1, ℓ,X′(a, b)) lim
ε→0

(z · r ·h ·C0) Dd1 (f)

Case 1 (p. 6) 0 0 ε ε 1/ε 1/ε 1 0

Case 2 (p. 8) 1 0 ε ε 1/ε 1/ε 1 0

Case 3 (p. 8) 0 0 1/ε ε 1 1/ε +∞ +∞
Case 4 (p. 11) 0 1 1/ε ε 1 0 ≤ C0 ≤ c1 C0 0 ≤ Dd1 ≤ c1−1

Case 5 (p. 15) 1 0 ε 1/ε 1 1/ε +∞ +∞
Case 6 (p. 18) 1 1 1/ε ε 1 0 ≤ C0 ≤ c1 C0 0 ≤ Dd1 ≤ c1−1

Case 7 (p. 21) 0 0 1/ε ϵ 1 0 ≤ C0 ≤ c1 C0 0 ≤ Dd1 ≤ c1−1

Case 8 (p. 22) 0 0 1/ε 1/ε 1 1 +∞ +∞
Case 9 (p. 25) 0 0 1/ε 1/ε 1 ε +∞ +∞
Case 10 (p. 27) 1 1 1/ε ε 1 1 1 0

Case 11 (p. 30) 1 1 1/ε 1/ε 1/ε ε +∞ +∞

If any calculations in the table are wrong, the measure is insufficient. Thus, we need to explain our
reasoning in Section 3.3

3.3. Computing Dd1
(f) for each Case in Table 1. We need to make sure the measure is correct, which

is done by checking for inaccuracies in Table 1. Otherwise, the measure of discontinuity is not well defined.

3.3.1. Case 1. Suppose f : X → Y is a function, where X = ∅, Y = R, X1 = Q, d1 = dimH(X1) = 0 and
dimH(X) = 0. Hence, X ′ = X ∩X1 = ∅.

Since Case 1 is an example of Section 2.2.2, criteria 2, the measure of discontinuity Dd1(f)
(Equation 4, page 5) should be zero.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since H0(X ′(a, b)) = H0(∅) = 0, therefore z(ε,X ′(a, b)) = ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}
Note, Xj(a, b) = {j, j+1}, since lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = ∅ (i.e., the set-theoretic limit14)

and for all j ∈ N, H0(Xj(a, b)) = 2.

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩ {j, j + 1}) = 2}
Hence, dimH(Range(f)) = 0, since the range of a function defined on the empty set is the empty set and
the Hausdorff dimension of the empty set is zero (i.e., the Hausdorff dimension is non-negative). Thereby,
R can be any set, where the counting measure #|R| ≥ 2 and HdimH(Range(f))(R) ≥ 2. Thus, the smallest
HdimH(Range(f))(R) can be is two, which means that R(Xj(a, b)) = 2.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |2 − 2| = 0, for all j ∈ N and 0 ≤ limj→∞ |R(Xj(a, b)) −
Hd1(Xj(a, b))| = 0 < +∞. Thus, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

14See Section 4.5, page 33
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we have r(ε,X ′(a, b)) = ε.

Part 3. h(ε,X ′(a, b))

If G(X ′(a, b)) is the graph of f |X′(a,b), G(X ′(a, b)) is empty, since X ′(a, b) is empty.

In addition, dimH(G(X ′(a, b))) = d′(G(X ′(a, b))) = 0 and Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0. Hence, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1/ε

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Notice that G(X ′(a, b)) is the graph of f |X′(a,b) and G(X ′(a, b)) is empty since X ′(a, b) is empty.

Also, note that:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

Hence, since G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b)) \G0(d1, X

′(a, b)) where G(X ′(a, b))
is empty, G is empty, and G0(d1, X

′(a, b)) is empty. Therefore, G0(d1, X
′(a, b)) is empty.

Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and
since X ′(a, b) is empty, ℓ(X ′(a, b)) is empty.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(6)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b)))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(∅ ∩ ∅) = C(∅)

w.r.t. the counting measure #| · | and Equation 6, #|∅| = 0 and C(∅) = 0. Thus, C0(d1, ℓ,X
′(a, b)) = 1/ε.

Part 5. limε→0(z · r · h · C0)

In Case 1 in Section 3.3.1 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = ε
• r(ε,X ′(a, b)) = ε
• h(ε,X ′(a, b)) = 1/ε
• C0(d1, ℓ,X

′(a, b)) = 1/ε

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (7)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(ε · ε · 1/ε · 1/ε) = 1
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Part 6. Applying The Measure of Discontinuity to f

For every B ⊆ X ′(a, b), c = 1 (see Equation 7):

lim
ε→0

M(ε, d1, ℓ, B) = lim
ε→0

(ε · ε · 1/ε · 1/ε) = 1 = c (8)

Thus, when c = 0 and c > 1, B is the empty set. Hence, B is always the empty set, since X ′(a, b) is the
empty set.
Therefore:

Mj(a, b, d1, t) = (9)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH(X′)(Xj(a, b))}

 =

max{0,min{0− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = 0

}))
min{1/t,H0(X′(a, b))}

+

max{0,min{1− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = 1

}))
min{1/t,H0(X′(a, b))}

+

∑
c∈{2,3,··· }∪{+∞}

max{0,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(X′(a, b))}

=

Once more, since B is always the empty set, the Hausdorff measure of B in its dimension is zero. Hence,
Equation 9 is the same as:

max{0,min{−1, t}} · H0 (∅)
max{1/t,H0(∅)} +

max{0,min{0, t}} · H0 (∅)
max{1/t,H0(∅)} +

∑
c∈{2,3,··· }∪{∞} max{0,min{c− 1, t}} · H0 (∅)

max{1/t,H0(∅)} =

max{0,−1} · 0
max{1/t, 0} +

max{0, 0} · 0
max{1/t, 0} +

∑
c∈{2,3,··· }∪{∞} max{0, c− 1} · 0

max{1/t, 0} =

max{0,−1} · 0
1/t

+
max{0, 0} · 0

1/t
+

∑
c∈{2,3,··· }∪{∞} max{0, c− 1} · 0

1/t
= 0 (t → +∞, so t > 0 and max{1/t, 0} = 1/t)

Thus, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

Mj(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

Mj(a, b, d1, t)
))

= lim
(a,b)→∞

(0) = 0

This verifies the blockquote in Case 1, which demands Dd1 = 0

3.3.2. Case 2. Suppose f : X → Y is a function, where X = ∅, Y = R, X1 = R, d1 = dimH(X1) = 1 and
dimH(X) = 0. Hence, X ′ = X ∩X1 = ∅.

Since Case 2 is an example of Section 2.2.2, criteria 2, the measure of discontinuity Dd1
(f)

should be zero.

Similar to Case 1, since Hd1(∅) = H1(∅) = 0, hence Dd1 = D1 = 0
This verifies the blockquote in Case 3.3.2, which demands Dd1 = 0

3.3.3. Case 3. Suppose f : X → Y is a function, where X is non-empty and finite, Y = R, X = X1,
d1 = dimH(X1) and dimH(X) = 0. Hence, X ′ = X ∩X1 = X

Since Case 3 is an example of Section 2.2.2, criteria 3, the measure of discontinuity Dd1
(f)

should be positive infinity.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).
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Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H0(X ′(a, b)) ≤ +∞ (i.e., the counting measure is #| · | and #|X ′(a, b)| > 0), hence z(ε,X ′(a, b)) =
1/ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}

Note, Xj(a, b) = X ′(a, b) (when X ′(a, b) is finite) or a sequence discrete finite sets (i.e., {Xj(a, b)}j∈N),
where lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit15) and for all j ∈ N,
0 < H0(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|X ′(a, b)|}

Hence, dimH(Range(f)) = 0, since X is discrete and the range of f is discrete. In addition, R can be
any set, where the counting measure #|R| ≥ #|Xj(a, b)| so #|Xj(a, b)| ≤ HdimH(Range(f))(R) ≤ +∞.

Thus, the smallest HdimH(Range(f))(R) can be is #|Xj(a, b)|. This means R(Xj(a, b)) = #|Xj(a, b)|, where
0 < #|Xj(a, b)| < +∞.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |#|Xj(a, b)| − #|Xj(a, b)|| = 0, for all j ∈ N and 0 ≤
limj→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = 0 < +∞. Thus, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice that G(X ′(a, b)) is discrete, since X ′(a, b) is discrete, so dimH(G(X ′(a, b))) = d′(G(X ′(a, b))) = 0.
Thus, when #| · | is the counting measure:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = H0(G(X ′(a, b)))

=

{
#|X ′(a, b)| 0 < #|X ′(a, b)| < +∞
+∞ #|X ′(a, b)| = +∞

since f |X′(a,b) is discrete, its graph is discrete. Hence, there exists a sequence of finite sets {Gj(X
′(a, b))}j∈N,

where infj→∞ Gj(X
′(a, b)) = infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) and 0 < H0(Gj(X
′(a, b))) < +∞ for all

j ∈ N. Thus, since (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, then using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

15See Section 4.5, page 33
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Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Again, note that G(X ′(a, b)) is the graph of f |X′(a,b).

In addition, when defining:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

since G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)) where G(X ′(a, b)) is discrete,
G is discrete, and G0(d1, X

′(a, b)) is discrete, hence G0(d1, X
′(a, b)) is empty.

Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and
since X ′(a, b) is non empty, then ℓ(X ′(a, b)) can exist.

Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(10)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(∅ ∩ ℓ(X ′(a, b))) = C(∅)

w.r.t. the counting measure #| · | and Equation 10, #|∅| = 0 and C(∅) = 0. Thus, C0(d1, ℓ,X
′(a, b)) = 1/ε.

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 3 in Section 3.3.3 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = 1/ε

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (11)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · ε · 1 · 1/ε) = +∞ (12)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B ⊆ X ′(a, b), c = +∞ (see Equation 11):

lim
ε→0

M(ε, d1, ℓ, B) = +∞ = c

Hence, when c = +∞ and B = Xj(a, b), such that:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞
we have HdimH(X′)(B) = H0(B) = #|Xj(a, b)| is the largest possible value. In addition, when 0 ≤ c < +∞,
H0(B) = H0(∅) = 0. Therefore:

M(a, b, d1, t) = (13)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH (X′)(Xj(a, b))}

 =
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∞∑
c=0

max{c,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+

max{0,min{∞− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = +∞

}))
min{1/t,H0(Xj(a, b))}

=∑∞
c=1 max{0,min{c− 1, t}} · H0 (∅)

max{1/t,H0(∅)}
+

max{0,min{+∞, t}} ·#|Xj(a, b)|
max{1/t,#|X(a, b)|}

=∑∞
c=1 max{0, c− 1} · 0

max{1/t,#|Xj(a, b)|}
+

max{0, t} ·#|Xj(a, b)|
max{1/t,#|Xj(a, b)|}

=

0

#|Xj(a, b)|
+

t ·#|Xj(a, b)|
#|Xj(a, b)|

= t

Thus, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

t

)
= +∞.

This verifies the blockquote at the top of Case 3, which states the measure of discontinuity D0(f) should
be positive infinity.

3.3.4. Case 4. Suppose f : X → Y is a function, where X = R, Y = R, X1 = Q, d1 = dimH(X1) = 0, and
dimH(X) = 1. Hence, X ′ = X ∩X1 = Q.

We define a family of sets X = {Xc : r ∈ {1, · · · , c1}} where the sets in the family X are pairwise disjoint,⋃c1

r=1 Xr = X and for all r ∈ {1, · · ·,m}, H1(Xr) = +∞ such that the closure16 of the graph of fr : Xr → R is
continuous on a positive measure subset X ⊆ X1:

17

f(x) =


f1(x) x ∈ X1

f2(x) x ∈ X2

...
...

fc1(x) x ∈ Xc1

Note, this function can exist [6].

In addition, Case 4 is an example of Section 2.2.2, criteria 6a so the measure of discontinuity
Dd1

(f) needs to be D(f) (Equation 1, page 3) where 0 ≤ Dd1
(f) ≤ c1 − 1.

See Section 4.6, page 33, for an explicit example.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H0(X ′(a, b)) ≤ +∞ (i.e., H0(Q ∩ (a, b)) = +∞), hence z(ε,X ′(a, b)) = 1/ε.

16topological closure
17See Section 4.1, page 33, where HdimH(X1)(X) > 0, X = Xr, X1 = X, and f(x) = fr(x)
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Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}

since X ′(a, b) is countably infinite, there exists a sequence of discrete finite sets (i.e., {Xj(a, b)}j∈N), where
lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit18) and for all j ∈ N,
0 < H0(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|Xj(a, b)|}

Hence, dimH(Range(f)) = 0, since both Xj(a, b) and the range of f |Xj(a,b) are discrete. In addition, d1 = 0.

Since 0 < #|Xj(a, b)| < +∞, thereby #|R| ≥ #|Xj(a, b)| and #|Xj(a, b)| ≤ HdimH(Range(f))(R) ≤ +∞.

Thus, the smallest HdimH(Range(f))(R) can be is #|Xj(a, b)|. That means R(Xj(a, b)) = #|Xj(a, b)|, where
0 < #|Xj(a, b)| < +∞.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |#|Xj(a, b)| − #|Xj(a, b)|| = 0, for all j ∈ N and 0 ≤
limj→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = 0 < +∞. Hence, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice that G(X ′(a, b)) is countably infinite, because X ′(a, b) is countably infinite, so dimH(G(X ′(a, b))) =
d′(G(X ′(a, b))) = 0. Thus, when #| · | is the counting measure:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = H0(G(X ′(a, b))) = +∞

Since f |X′(a,b) is countably infinite, there exists a sequence of finite sets {Gj(X
′(a, b))}j∈N, where

infj→∞ Gj(X
′(a, b)) = infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) and 0 < H0(Gj(X
′(a, b))) < +∞ for all j ∈ N

Therefore, since (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Moreover, X ′(a, b) = Q ∩ (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b).

Then, note:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

where G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) =
0, there is no G such that H0(G) = 0. Therefore, G0(d1, X

′(a, b)) is the empty set. Also, since X ′(a, b) =
Q ∩ (a, b), G0(d1, X

′(a, b)) is non-empty and intersects any vertical line with an x-intercept in R.
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.

18See Section 4.5, page 33
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Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(14)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #| · | and Equation 14, the number of times a vertical line intersects with
the closure of c1 functions continuous on positive measure subsets of X ′(a, b) = (a, b) is c = m (i.e.,
m ≥ 0) and c = n (i.e., n ≤ c1) times. Hence, 0 ≤ m ≤ c = #|G(X ′(a, b)) ∩ ℓ(X ′(a, b))| ≤ n ≤ c1 and
m ≤ c = C(G(X ′(a, b)) ∩ ℓ(X ′(a, b))) ≤ n so m ≤ c ≤ n.

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 4 of Section 3.3.4 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = c, where m ≤ c ≤ n

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (15)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · ε · 1 · c) = c (16)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B = Bc ⊆ X ′(a, b), c ∈ {0} ∪ N ∪ {+∞}:
lim
ε→0

M(ε, d1, ℓ, Bc) = c

Thus, when c = c ∈ {m, · · · , n} and Bc = B ∩Xj,c(a, b), such that:

n⋃
c=m

Xj,c(a, b) = Xj(a, b)

where:
lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:
0 < HdimH(X′)(Xj(a, b)) < +∞

then

HdimH(X′)(Bj,c(a, b)) = sup
(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X ′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
(17)

is the largest possible value. In addition, when c < m or c > n, then HdimH(X′)(B) = H1(∅) = 0 is the largest
possible value. Hence:

M(a, b, d1, t) = (18)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH(X′)(Xj(a, b))}

 =

m∑
c=0

max{0,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+
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n∑
c=m

max{0,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+

∑
c2∈{n,n+1,··· }∪{+∞}

max{0,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

=

∑m
c=0 max{0,min{c− 1, t}} · H0 (∅)

max{1/t,H0(Xj(a, b))}
+

n∑
c=m

max{0,min{c− 1, t}} · H0(Bj,c(a, b))

max{1/t,H0(Xj(a, b))}
+∑

c∈{n,n+1,··· }∪{+∞} max{0,min{c− 1, t}} · H0(∅)
max{1/t,H0(Xj(a, b))}

=∑m
c=0 max{0,min{c− 1, t}} · 0
max{1/t,H0(Xj(a, b))}

+
max{0,min{c− 1, t}} · H0(Bj,c(a, b))

max{1/t,H0(Xj(a, b))}
+

∑
c∈{n,n+1,··· }∪{+∞} max{0,min{c− 1, t}} · 0

max{1/t,H0(Xj(a, b))}
=

n∑
c=m

max{0, c− 1} · H0(Bj,c(a, b))

H0(Xj(a, b))
=

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|

Thus, the measure of discontinuity D0(f) is:

D0(f) = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

 lim
t→∞

lim inf
j→∞

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|


 = lim

(a,b)→∞

 lim
t→∞

lim sup
j→∞

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|


 (19)

Also, because Bj,c(a, b) ⊆ Xj(a, b) and 0 ≤ m ≤ c ≤ n ≤ c1,

0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

max{0,min{0− 1, t}} ·#|Bj,0(a, b)|
#|Xj(a, b)|

))
≤ D0(f) (20)

≤ lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

(c1 − 1) ·#|Bj,c1(a, b)|
#|Xj(a, b)|

))
= c1 − 1

since Bj,0 = Xj(a, b) and max{0,min{0 − 1, t}} = 0. In addition, Bj,c1 = Xj(a, b) and max{0,min{c1 −
1, t}} = c1 − 1, when t ≥ c1 − 1.

Moreover, in Section 2.2.2 criteria 6a, note that D0(f) = D(f) (Equation 38) where the definition of D(f)
is defined with this following list:

(1) the variable c is the number of the times the vertical line intersects the closure19 with respect to its
x-intercept

(2) lim supj→∞ X′
j = lim infj→∞ X′

j = X ′ (i.e., the set theoretic limit20) such that 0 < HdimH(X′)(X′
j)

< +∞ for all j ∈ N
(3) the arbitrary set Xc ⊆ X ∩X1 has the largest Hausdorff measure in its dimension, such that the

vertical line for all x ∈ Xc intersects the closure c times (m ≤ c ≤ n)

D(f) = lim
(a,b)→(−∞,∞)

lim inf
j→∞

n∑
c=m

(c− 1) ·H0(X′
j ∩Xc ∩ (a, b))

H0((X ∩X′
j ∩X1) ∩ (a, b))}

 (21)

19 topological closure
20See Section 4.5, page 33
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= lim
(a,b)→(−∞,∞)

lim sup
j→∞

n∑
c=m

(c− 1) ·H0(X′
j ∩Xc ∩ (a, b))

H0((X ∩X′
j ∩X1) ∩ (a, b))

 (22)

Hence, D0(f) = D(f), since:

• lim supj→∞ X′
j ∩ (a, b) = lim infj→∞ X′

j ∩ (a, b) = X ′(a, b) (i.e., the set-theoretic limit20) and
lim supj→∞ Xj(a, b) = lim infj→∞ Xj(a, b) = X ′(a, b)

• lim supj→∞ X′
j ∩ Xc ∩ (a, b) = lim infj→∞ X′

j ∩ Xc ∩ (a, b) = lim supj→∞ Bj,c(a, b) = lim infj→∞ Bj,c(a, b)

(i.e., see the definition of Bj,c(a, b) on page 13 and the definitions of the sets in the left hand side of
the equality on page 14, criteria 1-3)

• lim supj→∞(X ∩ X′
j ∩ X1) ∩ (a, b) = lim infj→∞(X ∩ X′

j ∩ X1) ∩ (a, b) = lim supj→∞ Xj(a, b) =
lim infj→∞ Xj(a, b)

Thus, with the bulleted list, we proved D0(f) = D(f) and verified the blockquote at the top of Case 4,
which states that the measure of discontinuity D0(f) is between integers 0 and c1.

3.3.5. Case 5. Suppose f : X → Y is a function, where X = Q, Y = R, d1 = dimH(X1) = 1, and
dimH(X) = 0. Hence, X ′ = X ∩X1 = Q. (Notice, d1 > dimH(X).)

We define a family of sets X = {Xr : r ∈ {1, · · · , c1}} where the sets in the family X are pairwise disjoint,⋃c1

m=1 Xr = X, and for all r ∈ {1, · · ·, c1}; H0(Xr) = +∞ such that the closure19 of fr : Xr → R is continuous
on the positive measure subset X ⊆ X1:

21

f(x) =


f1(x) x ∈ X1

f2(x) x ∈ X2

...
...

fc(x) x ∈ Xm

Note, this function can exist: e.g.,

Xr =

{{
s1/

(
2(c1−1)t1

)
: s1, t1 ∈ N

}
c1 = 1{

sr/
(
2(c1−r)tr

)
: sr ∈ oddN, tr ∈ oddN

}
\ {X1} 2 ≤ r ≤ c1

(23)

where we prove the sets in X = {Xr : r ∈ {1, · · · , c1}} are pairwise disjoint using Mathematical Induction.22

In addition, Case 5 is an example of Section 2.2.2, criteria 6c, so the measure of discontinuity
Dd1

(f) should be positive infinity. (See Section 4.7, page 34, for an explicit example.)

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since H1(X ′(a, b)) = 0 (i.e., H1(Q ∩ (a, b)) = 0), thus z(ε,X ′(a, b)) = ε.

21See Section 4.1, page 33, HdimH(X1)(X) > 0, X = Xr, X1 = X, and f(x) = fr(x)
22See Section 4.8, page 34.
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Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}
Note, Xj(a, b) exists (i.e., 1 = d1 > dimH(X) = 0) so there exists a sequence {Xj(a, b)}j∈N where both

lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) = Q ∩ (a, b) and for all j ∈ N, 0 < H1(Xj(a, b)) < +∞
(e.g., {qj}j∈N is an enumeration of the rationals, ϵ approaches 0, and Xj(a, b) = [qj − ϵ/2j , qj + ϵ/2j ].)

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,H1(f−1[R] ∩Xj(a, b)) = H1(Xj(a, b))}
Hence, dimH(Range(f)) = 0, since the graph of f is countably infinite. Note, R is any subset of f [Q],
where H1(f−1[R] ∩Xj(a, b)) = H1(Xj(a, b)); however, since H1(Xj(a, b)) > 0 and H1(f−1[R] ∩Xj(a, b)) ≤
H1(f−1[f [Q]] ∩Xj(a, b)) = 0 ̸= H1(Xj(a, b)). Hence, R = ∅ and inf(∅) = +∞.

Therefore, |R(Xj(a, b))−Hd1(Xj(a, b))| = |(+∞)−Hd1(Xj(a, b))| = +∞, for all j ∈ N and limj→∞ |R(Xj(a, b))−
Hd1(Xj(a, b))| = +∞. Thus, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = 1/ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Since X ′(a, b) is countably infinite, G(X ′(a, b)) is countably infinite. Thus, d′(G(X ′(a, b)) = 0 and

Hd′(G(X′(a,b))(G(X ′(a, b))) = +∞.
Moreover, {Gj(X

′(a, b))}j∈N exists: that is, consider the enumeration {gn}n∈N of G(X ′(a, b)), such that

Gj(X
′(a, b)) = (gn + ε/2j , gn + ε/2j).

Hence, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 1 and #| · | is the counting measure.
Again, note that G(X ′(a, b)) is the graph of f |X′(a,b).

In addition, note that:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

since G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b)) \ G0(d1, X

′(a, b)) and d1 = 1, hence
for all sets G ⊆ G, note that H1(G) = 0. Thus, G0(d1, X

′(a, b)) = G(X ′(a, b)) and G0(d1, X
′(a, b)) =

G(X ′(a, b)) \G0(d1, X
′(a, b)) = ∅.

Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and
since X ′(a, b) is non empty, ℓ(X ′(a, b)) can exist.

Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(24)

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))
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= inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(∅ ∩ ℓ(X ′(a, b)))

= inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(∅)

w.r.t. counting measure #| · | and Equation 24, #|∅| = 0 and C(∅) = 1/ε

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 5 of Section 3.3.5 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = ε
• r(ε,X ′(a, b)) = 1/ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = 1/ε

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (25)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(ε · 1/ε · 1 · 1/ε) = +∞ (26)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B ⊆ X ′(a, b), c = +∞ (see Equation 25):

lim
ε→0

M(ε, d1, ℓ, B) = +∞ = c

Hence, when c = +∞ and B = X ′(a, b), such that:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞
HdimH(X′)(B) = H0(X ′(a, b)) = H0(Q ∩ (a, b)) so H0(Xj(a, b)) = #|Xj(a, b)| is the largest possible value.

Also, when 0 ≤ c < +∞, then HdimH(X′)(B) = H1(∅) = 0 is the largest possible value. Hence:

M(a, b, d1, t) = (27)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH(X)(Xj(a, b))}

 =

∑
c∈{0}∪N

max{0,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+

max{0,min{+∞− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = +∞

}))
min{1/t,H0(Xj(a, b))}

=∑
c∈{0}∪N max{0,min{c− 1, t}} · H0 (∅)

max{1/t,#|Xj(a, b)|}
+

max{0,min{+∞− 1, t}} · H0(Xj(a, b))

max{1/t,#|Xj(a, b)|}
=∑

c∈{0,··· ,t} max{0, t} · 0
max{1/t,#|Xj(a, b)|}

+

∑
c∈{t,··· ,c−1} max{0, c− 1} · 0
max{1/t,#|Xj(a, b)|}

+
max{0, t} ·#|Xj(a, b)|

#|Xj(a, b)|
= (28)∑

c∈{0,··· ,t} t · 0
#|Xj(a, b)|

+

∑
c∈{t,··· ,c−1}(c− 1) · 0

#|Xj(a, b)|
+

t ·#|Xj(a, b)|
#|Xj(a, b)|

= t (29)

Thus, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

t

)
= +∞

This verifies the blockquote at the top of Case 5, which states the measure of discontinuity Dd1(f) = +∞
should be positive infinity.
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3.3.6. Case 6. Suppose f : X → Y is a function, X = R, Y = R, X1 = R, d1 = 1, dimH(X) = 1. Hence,
X ∩X1 = R.

We define a family of sets X = {Xc : r ∈ {1, · · · , c1}} where the sets in the family X are pairwise disjoint,⋃c1

r=1 Xr = X and for all r ∈ {1, · · ·,m}, H1(Xr) = +∞ such that the closure23 of the graph of fr : Xr → R is
continuous on a positive measure subset X ⊆ X1:

24

f(x) =


f1(x) x ∈ X1

f2(x) x ∈ X2

...
...

fc1(x) x ∈ Xc1

Note, this function can exist [6].

In addition, Case 6 is an example of Section 2.2.2, criteria 6a, so the measure of discontinuity
Dd1

(f) needs to be D(f) (Equation 1, page 3) where 0 ≤ Dd1
(f) ≤ c1 − 1.

See Section 4.6, page 33, for an explicit example.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H1(X ′(a, b)) ≤ +∞ (i.e., H1(R ∩ (a, b)) = b− a), hence z(ε,X ′(a, b)) = 1/ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}
since X ′(a, b) = (a, b), there exists a sequence of sets (i.e., {Xj(a, b)}j∈N where for all j ∈ N, Xj(a, b) =
X ′(a, b)), lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit25), and for all

j ∈ N, 0 < H1(Xj(a, b)) = H1(X ′(a, b)) = b− a < +∞.

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|Xj(a, b)|}
Thus, 0 ≤ dimH(Range(f)) ≤ 1, since dimH(Range(f)) ≤ dimH(Xj(a, b)) = dimH(X

′(a, b)) = dimH((a, b)) =
1. In addition, d1 = 1. Since 0 < Hd1(Xj(a, b)) = H1(X ′(a, b)) = H1(a, b) = b − a < +∞, hence
H1(f−1[R] ∩ Xj(a, b)) = H1(f−1[f [Xj(a, b)]] ∩ Xj(a, b)) = H1(Xj(a, b)) = b − a so f [Xj(a, b)] ⊆ R

and the smallest HdimH(Range(f))(R) can be is HdimH(Range(f))(f [Xj(a, b)]). That means R(Xj(a, b)) =

HdimH(Range(f))(f [Xj(a, b)]), where 0 < HdimH(Range(f))(f [Xj(a, b)]) < +∞, so there exists a constant C > 0

such that HdimH(Range(f))(f [Xj(a, b)]) = C · Hd1(Xj(a, b))
Therefore,

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = |C · H1(Xj(a, b)) − H1(Xj(a, b))| = |(C − 1)H1(Xj(a, b))| =

(|C − 1|)H1(Xj(a, b)), for all j ∈ N and 0 ≤ |(C − 1)H1(Xj(a, b))| < +∞. Hence, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = ε.

23topological closure
24See Section 4.1, page 33, where HdimH(X1)(X) > 0, X = Xr, X1 = X, and f(x) = fr(x)
25See Section 4.5, page 33
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Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b) = f |(a,b).
Note that:

HdimH(G(X′(a,b)))(G(X ′(a, b)) = Hd′(G(X′(a,b)))(G(X ′(a, b)) = H1(G(X ′(a, b)) =
c1∑

m=1

H1(Xm)Arclength(graph(fm|(a,b))) (30)

which is finite, since the arclength of c1 functions on a finite interval is finite.
Since d1 = dimH(G(X ′(a, b)) = 1 and HdimH(G(X′(a,b)))(G(X ′(a, b)) is finite, there then exists a sequence

of finite sets {Gj(X
′(a, b))}j∈N, where infj→∞ Gj(X

′(a, b)) = infj→∞ Gj(X
′(a, b)) = G(X ′(a, b)) and 0 <

Hd1(Gj(X
′(a, b))) < +∞ for all j ∈ N.

Thus, since (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
In addition, X ′(a, b) = (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b) = f |(a,b).

Thus, note that:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

and G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) = 1,
there exists G, where H1(G) = 0. However, in this case, it is unnecessary to remove any G0(d1, X

′(a, b)) from
G(X ′(a, b)), since the graph of f is nowhere dense in R2 and removing any G0(d1, X

′(a, b)) from G(X ′(a, b))
will not affect the maximum number of times an arbitrary vertical line intersects the closure of G(X ′(a, b)).
Therefore, G0(d1, X

′(a, b)) intersects any vertical line with an x-intercept in R.
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(31)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #| · | and Equation 31, the number of times a vertical line intersects with
the closure of c1 functions continuous on positive measure subsets of X ′(a, b) = (a, b) is c = m (i.e.,
m ≥ 0) and c = n (i.e., n ≤ c1) times. Hence, 0 ≤ m ≤ c = #|G(X ′(a, b)) ∩ ℓ(X ′(a, b))| ≤ n ≤ c1 and
m ≤ c = C(G(X ′(a, b)) ∩ ℓ(X ′(a, b))) ≤ n so m ≤ c ≤ n.

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 6 of Section 3.3.6 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = ε
• h(ε,X ′(a, b)) = 1



20 BHARATH KRISHNAN

• C0(d1, ℓ,X
′(a, b)) = c, where m ≤ c ≤ n

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (32)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · ε · 1 · c) = c (33)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B = Bc ⊆ X ′(a, b), c ∈ {0} ∪ N ∪ {+∞}:

lim
ε→0

M(ε, d1, ℓ, Bc) = c

Thus, when c = c ∈ {m, · · · , n} and Bc = B ∩Xj,c(a, b), such that:

n⋃
c=m

Xj,c(a, b) = Xj(a, b)

where:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞
then

HdimH(X′)(Bj,c(a, b)) = sup
(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X ′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
(34)

is the largest possible value. In addition, when c < m or c > n, then HdimH(X′)(B) = H1(∅) = 0 is the largest
possible value. Hence:

M(a, b, d1, t) = (35)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH(X′)(Xj(a, b))}

 =

m∑
c=0

max{0,min{c− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H1(Xj(a, b))}

+

n∑
c=m

max{0,min{c− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H1(Xj(a, b))}

+

∑
c2∈{n,n+1,··· }∪{+∞}

max{0,min{c− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H1(Xj(a, b))}

=

∑m
c=0 max{0,min{c− 1, t}} · H1 (∅)

max{1/t,H1(Xj(a, b))}
+

n∑
c=m

max{0,min{c− 1, t}} · H1(Bj,c(a, b))

max{1/t,H1(Xj(a, b))}
+∑

c∈{n,n+1,··· }∪{+∞} max{0,min{c− 1, t}} · H1(∅)
max{1/t,H1(Xj(a, b))}

=∑m
c=0 max{0,min{c− 1, t}} · 0
max{1/t,H1(Xj(a, b))}

+
max{0,min{c− 1, t}} · H1(Bj,c(a, b))

max{1/t,H1(Xj(a, b))}
+

∑
c∈{n,n+1,··· }∪{+∞} max{0,min{c− 1, t}} · 0

max{1/t,H1(Xj(a, b))}
=

n∑
c=m

max{0, c− 1} · H1(Bj,c(a, b))

H1(Xj(a, b))
=

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|
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Thus, the measure of discontinuity D0(f) is:

D0(f) = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

 lim
t→∞

lim inf
j→∞

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|


 = lim

(a,b)→∞

 lim
t→∞

lim sup
j→∞

n∑
c=m

(c− 1) ·#|Bj,c(a, b)|

#|Xj(a, b)|


 (36)

Also, because Bj,c(a, b) ⊆ Xj(a, b) and 0 ≤ m ≤ c ≤ n ≤ c1,

0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

max{0,min{0− 1, t}} ·#|Bj,0(a, b)|
#|Xj(a, b)|

))
≤ D0(f) (37)

≤ lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

(c1 − 1) ·#|Bj,c1(a, b)|
#|Xj(a, b)|

))
= c1 − 1

since Bj,0 = Xj(a, b) and max{0,min{0 − 1, t}} = 0. In addition, Bj,c1 = Xj(a, b) and max{0,min{c1 −
1, t}} = c1 − 1, when t ≥ c1 − 1.

Moreover, in Section 2.2.2 criteria 6a, note that D0(f) = D(f) (Equation 38) where the definition of D(f)
is defined with this following list:

(1) the variable c is the number of the times the vertical line intersects the closure26 with respect to its
x-intercept

(2) lim supj→∞ X′
j = lim infj→∞ X′

j = X ′ (i.e., the set theoretic limit27) such that 0 < HdimH(X′)(X′
j)

< +∞ for all j ∈ N
(3) the arbitrary set Xc ⊆ X ∩X1 has the largest Hausdorff measure in its dimension, such that the

vertical line for all x ∈ Xc intersects the closure c times (m ≤ c ≤ n)

D(f) = lim
(a,b)→(−∞,∞)

lim inf
j→∞

n∑
c=m

(c− 1) ·H1(X′
j ∩Xc ∩ (a, b))

H1((X ∩X′
j ∩X1) ∩ (a, b))}

 (38)

= lim
(a,b)→(−∞,∞)

lim sup
j→∞

n∑
c=m

(c− 1) ·H1(X′
j ∩Xc ∩ (a, b))

H1((X ∩X′
j ∩X1) ∩ (a, b))

 (39)

Hence, D0(f) = D(f), since:

• lim supj→∞ X′
j ∩ (a, b) = lim infj→∞ X′

j ∩ (a, b) = X ′(a, b) (i.e., the set-theoretic limit27) and
lim supj→∞ Xj(a, b) = lim infj→∞ Xj(a, b) = X ′(a, b)

• lim supj→∞ X′
j ∩ Xc ∩ (a, b) = lim infj→∞ X′

j ∩ Xc ∩ (a, b) = lim supj→∞ Bj,c(a, b) = lim infj→∞ Bj,c(a, b)

(i.e., see the definition of Bj,c(a, b) on page 20 and the definitions of the sets in the left hand side of
the equality on page 21, criteria 1-3)

• lim supj→∞(X ∩ X′
j ∩ X1) ∩ (a, b) = lim infj→∞(X ∩ X′

j ∩ X1) ∩ (a, b) = lim supj→∞ Xj(a, b) =
lim infj→∞ Xj(a, b)

Thus, with the bulleted list, we proved D1(f) = D(f) and verified the blockquote at the top of Case 4,
which states that the measure of discontinuity D0(f) is between integers 0 and c1.

3.3.7. Case 7. Suppose f : X → Y is a function, where X = Q, Y = R, X1 = Q, d1 = dimH(X1) = 0, and
dimH(X) = 0. Hence, X ′ = X ∩X1 = Q.

We define a family of sets X = {Xc : r ∈ {1, · · · , c1}} where the sets in the family X are pairwise disjoint,⋃c1

r=1 Xr = X and for all r ∈ {1, · · ·,m}, H1(Xr) = +∞ such that the closure28 of the graph of fr : Xr → R is
continuous on a positive measure subset X ⊆ X1:

29

26 topological closure
27See Section 4.5, page 33
28topological closure
29See Section 4.1, page 33, where HdimH(X1)(X) > 0, X = Xr, X1 = X, and f(x) = fr(x)
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f(x) =


f1(x) x ∈ X1

f2(x) x ∈ X2

...
...

fc1(x) x ∈ Xc1

Note, this function can exist [6].

In addition, Case 7 is an example of Section 2.2.2, criteria 6b so the measure of discontinuity
Dd1(f) needs to be D(f) (Equation 1, page 3) where 0 ≤ Dd1(f) ≤ c1 − 1.
See Section 4.6, page 33, for an explicit example.

Since d1 = 0 and X ′ = X ∩X1, the computations in Case 7 are exactly the same as Case 4.
Therefore, similar to Case 4, we proved D0(f) = D(f) and verified the blockquote at the top of Case 7

which states that the measure of discontinuity D0(f) is between integers 0 and c1.

3.3.8. Case 8. Suppose f : X → Y is a function, where X = Q ∩ [0, 1], Y = R, X1 = Q ∩ [0, 1], d1 =
dimH(X1) = 0, and dimH(X) = 0. Hence, X ′ = X ∩X1 = Q ∩ [0, 1].

Therefore, f(p/q) = 1/q for all coprime integers p, q ∈ Z. Note that f is hyper-discontinuous.30

In addition, Case 8 is an example of Section 2.2.2, criteria 5 so the measure of discontinuity
Dd1(f) needs to be positive infinity.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H0(X ′(a, b)) ≤ +∞ (i.e., H0(Q ∩ (a, b)) = +∞, when (a, b) ⊂ [0, 1] and [0, 1] ⊆ (a, b)), hence
z(ε,X ′(a, b)) = 1/ε. For simplicity, we say (a, b) ⊃ [0, 1] such that (a, b) → [0, 1].

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}

since X ′(a, b) is countably infinite, there exists a sequence of discrete finite sets (i.e., {Xj(a, b)}j∈N), where
lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit31) and for all j ∈ N,
0 < H0(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|Xj(a, b)|}

Hence, dimH(Range(f)) = 0, since Xj(a, b) and the range of f |Xj(a,b) are discrete. In addition, d1 = 0.

Thus, since 0 < #|Xj(a, b)| < +∞, thereby #|R| ≥ #|Xj(a, b)| and #|Xj(a, b)| ≤ HdimH(Range(f))(R) ≤ +∞;
however, there exists a lower bound greater than #|Xj(a, b)| since Range(f) = {1/q : q ∈ N} and for all
q ∈ N, there exist ϕ(q) isolated points on y = 1/q such that ϕ(·) is the Euler’s Totient Function.

To find the second lower bound, we note v is a natural number, R = {1, 1/2, · · · , 1/v}, andHd1(f−1[{1, 1/2,
· · · , 1/v}]) = H0(f−1[{1, 1/2, · · · , 1/v}]) =

∑v
i=1 ϕ(v) =

3
π2 v

2 + O(v log v) where O is the Big-O notation
and

∑v
i=1 ϕ(v) is the Totient summatory function. This is required since f [Xj(a, b)] must cover the entire

range of f and the set-theoretic limit31 of Xj(a, b) is Q ∩ [0, 1].

30See Section 4.3, page 33
31 See Section 4.5, page 33
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Moreover, Hd1(Xj(a, b)) = H0(Xj(a, b)) = #|Xj(a, b)|, R = {1, 1/2, . . . , 1/v}, and H0(f−1[R]∩Xj(a, b)) =
H0(Xj(a, b)), hence H0(f−1[{1, · · · , v}] ∩Xj(a, b)) = H0(Xj(a, b)) = #|Xj(a, b)| ≤ H0(f−1[{1, · · · , 1/v}]).
Thus, since H0(f−1[{1, · · · , 1/v}]) = 3

π2 v
2 + O(x log x) and H0(f−1[{1, · · · , v}] ∩ Xj(a, b)) = (1/C) ·

H0(f−1[{1, · · · , 1/v}]) for some constant C > 0, we have 1
C

3
π2 v

2 < 1
CH0(f−1[{1, · · · , 1/v}]) = H0(Xj(a, b)) =

#|Xj(a, b)| < 1
C

3
π2 (v + 1)2. Next, we solve v, by the following:

1

C

3

π2
v2 < H0(Xj(a, b)) = #|Xj(a, b)|

1

C

3

π2
v2 < #|Xj(a, b)|

v2 <
Cπ2

3
#|Xj(a, b)|

v =

⌊√
Cπ2

3
#|Xj(a, b)|

⌋
Hence, the smallest HdimH(Range(f))(R) can be is:

H0(R) = H0

({
0, · · · , 1

v

})
= v =

⌊√
Cπ2

3
#|Xj(a, b)|

⌋
.

That means:

R(Xj(a, b)) =

⌊√
Cπ2

3
#|Xj(a, b)|

⌋
.

Therefore:

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = ∣∣∣∣∣

⌊√
Cπ2

3
#|Xj(a, b)|

⌋
−#|Xj(a, b)|

∣∣∣∣∣
and when x 7→ #|Xj(a, b)| and x → ∞ (i.e., since limj→∞ #|Xj(a, b)| = ∞)

lim
x→∞

∣∣∣∣∣
⌊√

Cπ2

3
x

⌋
− x

∣∣∣∣∣ = +∞.

Hence, for all j ∈ N and limj→∞
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = +∞. Thus, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = 1/ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice that G(X ′(a, b)) is countably infinite since X ′(a, b) is countably infinite, so dimH(G(X ′(a, b))) =
d′(G(X ′(0, 1))) = 0. Hence, when #| · | is the counting measure:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = H0(G(X ′(a, b))) = +∞

Since f |X′(a,b) is countably infinite, there exists a sequence of finite sets {Gj(X
′(a, b))}j∈N, where

infj→∞ Gj(X
′(a, b)) = infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) and 0 < H0(Gj(X
′(a, b))) < +∞ for all j ∈ N

Thus, since (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1
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Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Moreover, X ′(a, b) = Q ∩ (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b).

Thus, note:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

where G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) =
0, there exists no G such that H0(G) = 0. Therefore, G0(d1, X

′(a, b)) is the empty set. Also, the range of f is
{1/q : q ∈ N} where for all q ∈ N, there exists ϕ(q) points32 on y = 1/q. Since the range of f is dense in {0},
limq→∞ ϕ(q) = +∞ and for all prime q, {(p/q, 1/q) : p ∈ N, 0 < p < q} is evenly distributed33 on y = 1/q,
hence G0(d1, X

′(a, b)) = {(x, 0) : x ∈ Q ∩ [0, 1]} and any vertical line with an x-intercept in R intersects once
with G0(d1, X

′(a, b)).
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(40)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #| · | and Equation 40, #|G(X ′(a, b)) ∩ ℓ(X ′(a, b))| = 1 and C(G(X ′(a, b)) ∩
ℓ(X ′(a, b))) = 1.

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 8 of Section 3.3.8 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = 1/ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = 1

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (41)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · 1/ε · 1 · c) = +∞ (42)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B ⊆ X ′(a, b), c = +∞ (see Equation 41):

lim
ε→0

M(ε, d1, ℓ, B) = +∞ = c

Hence, when c = +∞ and B = Xj(a, b), such that:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞

32ϕ(·) is Euler’s Totient function (see Section 4.9, page 4.9)
33The set of all x-values in Tq = {(p/q, 1/q) : p ∈ N, 0 < p < q} or tq = {p/q : 0 < p < q} is Equidistributed on [α, β] = [0, 1]

(see Section 4.10, page 35)
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then HdimH(X′)(B) = H0(B) = #|Xj(a, b)| is the largest possible value. Also, when 0 ≤ c < +∞, H0(B) =
H0(∅) = 0. Therefore:

M(a, b, d1, t) = (43)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH (X′)(Xj(a, b))}

 =

∞∑
c=0

max{c,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+

max{0,min{∞− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = +∞

}))
min{1/t,H0(Xj(a, b))}

=∑∞
c=1 max{0,min{c− 1, t}} · H0 (∅)

max{1/t,H0(∅)}
+

max{0,min{+∞, t}} ·#|Xj(a, b)|
max{1/t,#|X(a, b)|}

=∑∞
c=1 max{0, c− 1} · 0

max{1/t,#|Xj(a, b)|}
+

max{0, t} ·#|Xj(a, b)|
max{1/t,#|Xj(a, b)|}

=

0

#|Xj(a, b)|
+

t ·#|Xj(a, b)|
#|Xj(a, b)|

= t

Hence, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

t

)
= +∞

This verifies the blockquote at the top of Case 8, which states the measure of discontinuity D0(f) should
be positive infinity.

3.3.9. Case 9. Suppose f : X → Y is a function, X = Q, Y = R, X1 = Q, d1 = dimH(X1) = 0, dimH(X) = 0.
Hence, X ′ = X ∩X1 = Q.

We define f such that its graph is dense in R2

Note, this function can exist [3].

Case 9 is not mentioned in Section 2.2.2; however, we want to see if the measure of discontinuity
Dd1

(f) gives an intuitive answer.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H0(X ′(a, b)) ≤ +∞ (i.e., H0(Q ∩ (a, b)) = +∞), hence z(ε,X ′(a, b)) = 1/ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}
since X ′(a, b) is countably infinite, there exists a sequence of discrete finite sets (i.e., {Xj(a, b)}j∈N), where
lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic limit34) and for all j ∈ N,
0 < H0(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|Xj(a, b)|}

34See Section 4.5, page 33
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Hence, dimH(Range(f)) = 0, since Xj(a, b) and the range of f |Xj(a,b) are discrete. In addition, d1 = 0. Since

0 < #|Xj(a, b)| < +∞, thereby #|R| ≥ #|Xj(a, b)| and #|Xj(a, b)| ≤ HdimH(Range(f))(R) ≤ +∞; however,
there exists a lower bound greater than #|Xj(a, b)| because Range(f) is dense in R and R = f [Xj(a, b)]. Hence,

since the graph of f is dense in R2 and f [Xj(a, b)] is dense in R, the smallest HdimH(Range(f))(R) = H0(R)
can be is +∞. That means R(Xj(a, b)) = +∞.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |(+∞)−#|Xj(a, b)|| = 0, for all j ∈ N and limj→∞ |R(Xj(a, b))−
Hd1(Xj(a, b))| = +∞. Hence, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = 1/ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice that G(X ′(a, b)) is countably infinite, since X ′(a, b) is countably infinite, so dimH(G(X ′(a, b))) =
d′(G(X ′(a, b))) = 0. Thus, when #| · | is the counting measure:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = H0(G(X ′(a, b))) = +∞

Since f |X′(a,b) is countably infinite, there exists a sequence of finite sets {Gj(X
′(a, b))}j∈N, where

infj→∞ Gj(X
′(a, b)) = infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) and 0 < H0(Gj(X
′(a, b))) < +∞ for all j ∈ N

Thus, since (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Moreover, X ′(a, b) = Q ∩ (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b).

Thus, note:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

where G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) =
0, there exists no G such that H0(G) = 0. Therefore, G0(d1, X

′(a, b)) is the empty set. Also, since
X ′(a, b) = Q ∩ (a, b), G0(d1, X

′(a, b)) = R2 and intersects any vertical line with an x-intercept in R.
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(44)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #|·| and Equation 44, #|G(d1, X
′(a, b))∩ℓ(X ′(a, b))| = +∞ andC(G(d1, X

′(a, b))∩
ℓ(X ′(a, b))) = ε
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Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 9 of Section 3.3.9 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = 1/ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = ε

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (45)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · 1/ε · 1 · ε) = +∞ (46)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B ⊆ X ′(a, b), c = +∞ (see Equation 49):

lim
ε→0

M(ε, d1, ℓ, B) = +∞ = c

Hence, when c = +∞ and B = Xj(a, b), such that:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞
then HdimH(X′)(B) = H0(B) = #|Xj(a, b)| is the largest possible value. Also, when 0 ≤ c < +∞, H0(B) =
H0(∅) = 0. Hence:

M(a, b, d1, t) = (47)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH (X′)(Xj(a, b))}

 =

∞∑
c=0

max{c,min{c− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H0(Xj(a, b))}

+

max{0,min{∞− 1, t}} · sup
(
H0

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = +∞

}))
min{1/t,H0(Xj(a, b))}

=∑∞
c=1 max{0,min{c− 1, t}} · H0 (∅)

max{1/t,H0(∅)}
+

max{0,min{+∞, t}} ·#|Xj(a, b)|
max{1/t,#|X(a, b)|}

=∑∞
c=1 max{0, c− 1} · 0

max{1/t,#|Xj(a, b)|}
+

max{0, t} ·#|Xj(a, b)|
max{1/t,#|Xj(a, b)|}

=

0

#|Xj(a, b)|
+

t ·#|Xj(a, b)|
#|Xj(a, b)|

= t

Thus, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

t

)
= +∞

The measure of discontinuity D0(f) is intuitive, since the dense subset D ⊆ graph(f) has H0(D) = +∞.

3.3.10. Case 10. Suppose f : X → Y is a function, X = R, Y = R, X1 = R, d1 = 1, dimH(X) = 1, f is the
Conway-Base 13 function [7].

In addition, Case 10 is everywhere surjective35, but is defined at f(x) = 0 for almost all
x ∈ R [4]. This case is an example of Section 2.2.2, criteria 7b, so since f(x) = 0 for almost
all x ∈ R, the measure of discontinuity Dd1(f) needs to be zero.

35See Section 4.4, page 33
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For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H1(X ′(a, b)) ≤ +∞ (i.e., 0 < H1(R ∩ (a, b)) = b− a ≤ +∞), hence z(ε,X ′(a, b)) = 1/ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}

since X ′(a, b) is countably infinite, there exists a sequence of discrete finite sets (i.e., {Xj(a, b)}j∈N where for
all j ∈ N, Xj(a, b) = X ′(a, b)), lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic

limit36) and for all j ∈ N, 0 < H1(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,H1(f−1[R] ∩Xj(a, b)) = H1(Xj(a, b))}

Hence, 0 ≤ dimH(Range(f)) = 1, since the range of the Conway Base-13 function is R. In addition, d1 = 1.
Since 0 < H1(Xj(a, b)) = b− a < +∞ and H1(f−1[R] ∩Xj(a, b)) = H1(Xj(a, b)), when R1 ⊇ Xj(a, b) is an
arbitrary set, we want f [R1] = {0} since f(x) = 0 for “almost all” x ∈ R and H1(R1) = H1(R). Thus, the
smallest HdimH(Range(f))(R) = H1(R) can be is H1({0}) = 0 which means R(Xj(a, b)) = 0.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |0−(b−a)| = b−a, for all j ∈ N and 0 ≤ limj→∞ |R(Xj(a, b))−
Hd1(Xj(a, b))| = b− a < +∞. Hence, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = 1/ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice thatG(X ′(a, b)) is dense in [a, b]×R and f(x) = 0 for almost all x ∈ R. Hence, since dimH(G(X ′(a, b))) =
d′(G(X ′(a, b))) = 1 and ”almost all” of G(X ′(a, b)) is a horizontal line segment with arc length b− a:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = H1(G(X ′(a, b))) = b− a

In addition, suppose D1 ⊆ (a, b) is an arbitrary set such that for all x ∈ D1, f(x) = 0 and D2 =
G(X ′(a, b)) \ {(x, 0) : x ∈ D1}. Since H1(D1) = b − a and H1(D2) = 0 are finite, there exists a
sequence of sets {Gj(X

′(a, b))}j∈N, where infj→∞ Gj(X
′(a, b)) = infj→∞ Gj(X

′(a, b)) = G(X ′(a, b)) and
0 < H1(Gj(X

′(a, b))) < +∞ for all j ∈ N
Therefore, since (∀j)(Hd1(Gj(X

′(a, b))) ∈ (0,+∞)) and Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1

36See Section 4.5, page 33
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Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Moreover, X ′(a, b) = (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b).

Thus, note:

Pk(d1, G(X ′(a, b))) =
{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

where G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) =
1, there exists G such that H1(G) = 0: when D1 ⊆ (a, b) is an arbitrary set where for all x ∈ D1,
f(x) = 0 and D2 = G(X ′(a, b)) \ {(x, 0) : x ∈ D1}, then note H1(D2) = 0. Therefore, G0(d1, X

′(a, b)) is
arbitrary. However, since D2 is a dense subset of G(X ′(a, b)) and G(X ′(a, b)) \D2 = {(x, 0) : x ∈ D1}, so
G0(d1, X

′(a, b)) = {(x, 0) : x ∈ D1} and intersects any vertical line once with an x-intercept in R.
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(48)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #| · | and Equation 48, #|G(d1, X
′(a, b))∩ℓ(X ′(a, b))| = 1 and C(G(d1, X

′(a, b))∩
ℓ(X ′(a, b))) = 1

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 10 of Section 3.3.10 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = ε
• h(ε,X ′(a, b)) = 1
• C0(d1, ℓ,X

′(a, b)) = 1

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (49)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · ε · 1 · ε) = +∞ (50)

Part 6. Applying The Measure of Discontinuity to f

For every B ⊆ X ′(a, b), c = 1 (see Equation 49):

lim
ε→0

M(ε, d1, ℓ, B) = lim
ε→0

(1/ε · ε · 1 · 1) = 1 = c (51)

Thus, when c = 0 and c > 1, B is the empty set. Hence, when c = 1, B = X ′(a, b).
Now, suppose lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set theoretic limit37) where

for all j ∈ N, 0 < H1(Xj(a, b)) < +∞. Thus, for all j ∈ N, Xj(a, b) = X ′(a, b) since 0 < H1(X ′(a, b)) =
b− a < +∞.
Hence:

Mj(a, b, d1, t) = (52)

37See Section 4.5, page 33
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
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH(X′)(Xj(a, b))}

 =

max{0,min{0− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = 0

}))
min{1/t,H1(X′(a, b))}

+

max{0,min{1− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = 1

}))
min{1/t,H1(X′(a, b))}

+

∑
c∈{2,3,··· }∪{+∞}

max{0,min{c− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ ∅, lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H1(X′(a, b))}

=

max{0,min{−1, t}} · H1 (∅)
max{1/t,H1(B ∩Xj(a, b))}

+
max{0,min{0, t}} · H1 (B ∩Xj(a, b))

max{1/t,H1(B ∩Xj(a, b))}
+

∑
c∈{2,3,··· }∪{∞} max{0,min{c− 1, t}} · H1 (∅)

max{1/t,H1(B ∩Xj(a, b))}
=

max{0,−1} · 0
max{1/t,H1(B ∩X′(a, b))}

+
max{0, 0} · H1(B ∩X′(a, b))

max{1/t,H1(B ∩X′(a, b))}
+

∑
c∈{2,3,··· }∪{∞} max{0, c− 1} · 0
max{1/t,H1(B ∩X′(a, b))}

=

−1 · 0
b− a

+
0 · b− a

b− a
+

∑
c∈{2,3,··· }∪{∞} 0 · 0

b− a
= 0

Hence, the measure of discontinuity Dd1
is:

D0 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

Mj(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

Mj(a, b, d1, t)
))

= lim
(a,b)→∞

(0) = 0

This verifies the blockquote at the top of Case 10, which states the measure of discontinuity D0(f) should
be zero.

3.3.11. Case 11. Suppose f : X → Y is a function, X = R, Y = R, X1 = R, d1 = dimH(X1) = 1,
dimH(X) = 0. Hence, X ′ = X ∩X1 = R.

We define f such that the graph of f is everywhere surjective38 with zero Hausdorff measure in its
dimension.

Note, this function can exist [5].

In addition, Case 11 is an example of Section 2.2.2, criteria 8, so the measure of discontinuity
Dd1

(f) needs to be positive infinity.
See Section 4.4, page 33, for an explicit example.

For parts 1-5, we compute the components z(ε,X ′(a, b)), r(ε,X ′(a, b)), h(ε,X ′(a, b)), C0(d1, ℓ,X
′(a, b))

and limε→0 M(ε, d1, ℓ,X
′(a, b)) (i.e., their motivation is in Section 3.1, page 4), then use these components to

compute the measure of discontinuity Dd1
(f) (part 6).

Part 1. z(ε,X ′(a, b))

Suppose:

z(ε,X ′(a, b)) =

{
ε Hd1(X ′(a, b)) = 0, ε > 0

1/ε 0 < Hd1(X ′(a, b)) ≤ +∞, ε > 0

since 0 < H1(X ′(a, b)) ≤ +∞ (i.e., H1(Q ∩ (a, b)) = +∞), hence z(ε,X ′(a, b)) = 1/ε.

Part 2. r(ε,X ′(a, b))

Suppose:

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = Hd1(Xj(a, b))}

38See 4.4, page 33
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since X ′(a, b) is countably infinite, there exists a sequence of discrete finite sets (i.e., {Xj(a, b)}j∈N where for
all j ∈ N, Xj(a, b) = X ′(a, b)), lim infj→∞ Xj(a, b) = lim supj→∞ Xj(a, b) = X ′(a, b) (i.e., the set-theoretic

limit39) and for all j ∈ N, 0 < H1(Xj(a, b)) < +∞

R(Xj(a, b)) = inf{HdimH(Range(f))(R) : R ⊆ Y,Hd1(f−1[R] ∩Xj(a, b)) = #|Xj(a, b)|}
Hence, dimH(Range(f)) > 1, since f is everywhere surjective such that its graph has zero Hausdorff measure in
its dimension. In addition, d1 = 1. Since 0 < H1(Xj(a, b)) < +∞ and H1(f−1[R] ∩Xj(a, b)) = H1(Xj(a, b)),
then when R1 ⊇ Xj(a, b) = (a, b) is an arbitrary set, f [R1] = R for any R1 ⊆ Xj(a, b) since f is everywhere

surjective and its graph has zero Hausdorff measure in its dimension. Thus, the smallest HdimH(Range(f))(R) =
H1(R) can be is +∞. That means R(Xj(a, b)) = +∞.

Therefore,
∣∣R(Xj(a, b))−Hd1(Xj(a, b))

∣∣ = |(+∞)− (b− a)| = 0, for all j ∈ N and limj→∞ |R(Xj(a, b))−
Hd1(Xj(a, b))| = +∞. Thus, using:

r(ε,X ′(a, b)) =


ε 0 ≤ lim sup

j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ < +∞, ε > 0

1/ε lim sup
j→∞

∣∣R(Xj(a, b))−Hd1(Xj(a, b))
∣∣ = +∞, ε > 0

we have r(ε,X ′(a, b)) = 1/ε.

Part 3. h(ε,X ′(a, b))

Suppose G(X ′(a, b)) is the graph of f |X′(a,b).

Notice that dimH(G(X ′(a, b))) > 1, f is everywhere surjective and the graph of f has zero Hausdorff measure
in its dimension. Hence:

Hd′(G(X′(a,b)))(G(X ′(a, b))) = Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0

Therefore, using:

h(ε,X ′(a, b)) =

{
1/ε Hd′(G(X′(a,b)))(G(X ′(a, b))) = 0, ε > 0

1 (∀j)(Hd1(Gj(X
′(a, b))) ∈ (0,+∞)),Hd′(G(X′(a,b)))(G(X ′(a, b))) ̸= 0

we have h(ε,X ′(a, b)) = 1/ε

Part 4. C0(d1, ℓ,X
′(a, b))

Suppose, d1 = 0 and #| · | is the counting measure.
Moreover, X ′(a, b) = (a, b) and G(X ′(a, b)) is the graph of f |X′(a,b).

Thus, note:
Pk(d1, G(X ′(a, b))) =

{
G ⊆ G(X ′(a, b)) : Hd1(G) = k

}
Gk(d1, X

′(a, b)) ∈ Pk(d1, G(X ′(a, b)))

where G0(d1, X
′(a, b)) is the set of all limit points of G(X ′(a, b))\G0(d1, X

′(a, b)). Since dimH(G(X ′(a, b))) =
1, there exists G such that H1(G) = 0. However, because dimH(G(X ′(a, b))) = d′(G(X ′(a, b))) > 1,
therefore H1(G(X ′(a, b))) = +∞. Hence, G0(d1, X

′(a, b)) is the empty set. Also, since X ′(a, b) = (a, b),
G0(d1, X

′(a, b)) = [a, b]× R and intersects any vertical line with an x-intercept in R.
Moreover, ℓ(X ′(a, b)) ⊂ R2 is an arbitrary, vertical line whose x-intercept is an element of X ′(a, b) and

since X ′(a, b) is non-empty, ℓ(X ′(a, b)) can exist.
Hence, whenever:

C(X) =


1/ε #|X| = 0, ε > 0

#|X| 0 < #|X| < +∞
ε #|X| = +∞, ε > 0

(53)

since

C0(d1, ℓ,X
′(a, b)) = inf

G0(d1,X′(a,b))∈P0(d1,X′(a,b))
C(G0(d1, X

′(a, b)) ∩ ℓ(X ′(a, b))

39See Section 4.5, page 33
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inf
G0(d1,X′(a,b))∈P0(d1,X′(a,b))

C(G(X ′(a, b)) ∩ ℓ(X ′(a, b)))

w.r.t. the counting measure #|·| and Equation 53, #|G(d1, X
′(a, b))∩ℓ(X ′(a, b))| = +∞ andC(G(d1, X

′(a, b))∩
ℓ(X ′(a, b))) = ε

Part 5. limε→0 M = limε→0(z · r · h · C0)

In Case 11 of Section 3.3.11 Part 1, 2, 3, and 4, where:

• z(ε,X ′(a, b)) = 1/ε
• r(ε,X ′(a, b)) = 1/ε
• h(ε,X ′(a, b)) = 1/ε
• C0(d1, ℓ,X

′(a, b)) = ε

lim
ε→0

M(ε, d1, ℓ,X
′(a, b)) = (54)

lim
ε→0

(z(ε,X ′(a, b)) · r(ε,X ′(a, b)) · h(ε,X ′(a, b)) · C0(d1, ℓ,X ′(a, b))) = lim
ε→0

(1/ε · ε · 1 · ε) = +∞ (55)

Part 6. Applying The Measure of Discontinuity to f

Since, for every B ⊆ X ′(a, b), c = +∞ (see Equation 54):

lim
ε→0

M(ε, d1, ℓ, B) = +∞ = c

Hence, when c = +∞ and B = Xj(a, b), such that:

lim sup
j→∞

Xj(a, b) = lim inf
j→∞

Xj(a, b) = X ′(a, b)

and:

0 < HdimH(X′)(Xj(a, b)) < +∞

HdimH(X′)(B) = H1(B) = b − a is the largest possible value. In addition, when 0 ≤ c < +∞, H1(B) =
H1(∅) = 0. Therefore, since Xj(a, b) = X ′(a, b), for all j ∈ N:

M(a, b, d1, t) = (56)
∑

c∈N∪{0}∪{+∞}
max{0,min{c− 1, t}} · sup

(
HdimH(X′)

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,HdimH (X′)(Xj(a, b))}

 =

∞∑
c=0

max{c,min{c− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ X′(a, b), lim

ε→0
M(ε, d1, ℓ, B) = c

}))
min{1/t,H1(Xj(a, b))}

+

max{0,min{∞− 1, t}} · sup
(
H1

({
B ∩Xj(a, b) : B ⊆ X′(a, b) : lim

ε→0
M(ε, d1, ℓ, B) = +∞

}))
min{1/t,H1(Xj(a, b))}

=∑∞
c=1 max{0,min{c− 1, t}} · H1 (∅)

max{1/t,H1(X′(a, b)}
+

max{0,min{+∞, t}} · H1(Xj(a, b)) +Xj(a, b)|
max{1/t,H1(X′(a, b))}

=∑∞
c=1 max{0, c− 1} · 0
max{1/t, b− a}

+
max{0, t} · b− a

max{1/t, b− a}
=

0

b− a
+

t · b− a

b− a
= t

Thus, the measure of discontinuity Dd1
is:

D1 = lim
(a,b)→∞

(
lim
t→∞

(
lim sup
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

(
lim inf
j→∞

M(a, b, d1, t)
))

= lim
(a,b)→∞

(
lim
t→∞

t

)
= +∞

This verifies the blockquote at the top of Case 11, which states the measure of discontinuity D1(f) should
be positive infinity.
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4. Appendix

4.1. Definition of Continuity. Suppose X ⊆ R and Y ⊆ R are arbitrary sets. The continuity of f : X → Y
at x0 ∈ X means that for every ϵ > 0, there exists a δ > 0 such that for all x ∈ X \ {x0}

|x− x0| < δ implies |f(x)− f(x0)| < ϵ

Hence, f is continuous on arbitrary set X1 ⊆ R, where:
(1) dimH(·) is the Hausdorff dimension
(2) HdimH(·)(·) is the Hausdorff measure in its dimensions on the Borel σ-algebra

whenever:

CM(f,X1) = HdimH(X1)(X1 \X) = 0 (57)

4.2. “Splitting” the Closure of the Graph of f : X → Y into c Functions Continuous on the Set
X. Let X ⊆ R and Y ⊆ R be arbitrary sets. Suppose Cg = cl(graph(f)) is the topological closure of the
graph of function f : X → Y . Hence, for all i ∈ {1, 2, · · · , c}, {(x, fi(x)) : x ∈ dom(fi)} ⊆ Cg such that
CM(fi, X) = 0.

4.2.1. Example. Consider the Dirichlet Function f : R → R,

f(x) =

{
1 x ∈ Q
0 x ̸∈ Q

Note, Cg = {(x, 0), (x, 1) : x ∈ R}. Thus, i ∈ {1, 2}, {(x, i− 1) : x ∈ R} ⊆ Cg such that CM(fi, X) = 0 (in
Section 4.1, for all i ∈ {1, 2}, dom(fi) = R, X = R, and fi : R → R is continuous such that CM(fi, X) =
HdimH(X)(X \ dom(fi)) = H1(R \ R) = H1(∅) = 0).

4.3. Hyper-discontinuous function. Suppose X ⊂ R and Y ⊂ R.
Definition: A function f : X → Y is hyper-discontinuous if for every x ∈ X, ∃ δ > 0, ε > 0 such that

y ∈ X \ {x}, |y − x| < δ, =⇒ |f(x)− f(y)| ≥ ε.

4.3.1. Explicit Example of a Hyper-Discontinuous Functions. Consider the function f : Q ∩ [0, 1] → R, where
f(p/q) = 1/q for all coprime integers p, q ∈ Z

4.4. Everywhere Surjective Function. Let (X,T) be a standard topology. A function f : X → Y is
everywhere surjective from X to Y , if f [X] = Y for every X ∈ T. (See [2], for more info).

4.4.1. Explicit Example of a Everywhere Surjective Function. Consider an everywhere surjective f : R → R
whose graph has zero Hausdorff measure in its dimension.

Since (R,T) is the standard topology, hence f [(a, b)] = R for every non-empty open interval (a, b). See
this citation [5] for an explicit example.

4.5. Set Theoretic Limit. Suppose (Xj)j∈N is a sequence of sets. The set-theoretic limit of a sequence of
sets (Xj)j∈N is X, whenever:

lim sup
j→∞

Xj =
⋂
j≥1

⋃
q≥j

Xq

lim inf
r→∞

Xj =
⋃
j≥1

⋂
q≥j

Xq

where:

lim sup
j→∞

Xj = lim inf
j→∞

Xj = X (58)

4.6. Explicit Example of Cases 4 and 6. Suppose, X = R, Y = R, X1 = Q (Case 4), X1 = R (Case 6),
dimH(X) = 1, and the closure of the graph of f can be split into c1 functions continuous40 on X1. (Notice,
d1 < dimH(X)).

40Section 4.2, page 33, where X = X1
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4.6.1. Explicit Example. Consider the following [6]:

• Partition R into sets A and B, such that A and B have a positive H1 measure in every non-empty
open interval (a, b) and limc→∞ H1(A ∩ (−c, c))/(2c) ̸= limc→∞ H1(B ∩ (−c, c))/(2c).

For simplicity, partition the unit interval [0, 1), then repeat that partition so x ∈ A when
x− ⌊x⌋ ∈ A.
Let A1 = [0, 2/3). Let B1 = (2/3, 1].
If
⋃∞

n=1 An = A, then for each interval in An remove the middle 1/2n+1 of the interval and
send it to Bn. Similarly, for each interval in Bn, remove the middle 1/2n of the interval
and send it to An. Each set less than what is removed plus what is transferred determines
An+1, Bn+1. Thereby,

⋃∞
n=1 Bn = B.

• N1 =
⋃

n1∈Z[
4n1

3 , 4n1+2
3 ]

• N2 =
⋃

n2∈Z[
4n2+1

3 , 4n2+2
3 ]

• N3 =
⋃

n3∈Z[
4n3+2

3 , 4n3+4
3 ]

• N2 ⊆ N1

• N1 ∩N3 = ∅
• N2 ∩N3 = ∅
• Q1 = {m1/n1 : m1 ∈ odd N, n1 ∈ even N}
• Q2 = {m2/n2 : m2, n2 ∈ odd N}
• Q3 = {m3/n3 : m3 ∈ even N, n3 ∈ odd N}
• Q1 ∩Q2 ∩Q3 = ∅

The following is an explicit example of f : R → R matching Case 4 and Case 6:

f(x) =



x x ∈ (A \Q) ∩N1

x sin(x) x ∈ (B \Q) ∩N2

x+ sin(x) x ∈ Q1 ∪N3

x+ sin(x) + cos(x) x ∈ Q2

x+ sin(x) cos(x+ 1) x ∈ Q3

(59)

4.7. Explicit Example of Case 5 and 7. Suppose f : X → Y is a function, where X = Q, Y = R, X1 = R
(Case 5), X1 = Q (Case 7), and dimH(X) = 1.

4.7.1. Explicit Example. Consider the following:

• N1 =
⋃

n1∈Z[
4n1

3 , 4n1+2
3 ]

• N2 =
⋃

n2∈Z[
4n2+1

3 , 4n2+2
3 ]

• N3 =
⋃

n3∈Z[
4n3+2

3 , 4n3+4
3 ]

• N2 ⊆ N1

• N1 ∩N3 = ∅
• N2 ∩N3 = ∅
• Q1 = {m1/n1 : m1 ∈ odd N, n1 ∈ even N}
• Q2 = {m2/n2 : m2, n2 ∈ odd N}
• Q3 = {m3/n3 : m3 ∈ even N, n3 ∈ odd N}
• Q1 ∩Q2 ∩Q3 = ∅

The following is an explicit example of f : Q → R matching Case 5 and Case 7:

f(x) =


x x ∈ Q1 ∩N1

x+ sin(x) x ∈ Q2 ∩ (N2 ∪N3)

x+ sin(x) + cos(2x) x ∈ Q3 ∪ ((Q1 ∩N3) ∪ (Q2 ∩N1))

(60)

4.8. Proof The Example of Sets In The Family X = {Xr : r ∈ {1, · · · , c1}} On Case 5, page 15 are
Pairwise Disjoint. Suppose, we define the family of sets X = {Xr : r ∈ {1, · · · , c1}}{

Xr =
{
s1/

(
2(c1−1)t1

)
: s1, t1 ∈ Z

}
r = 1

Xr =
{
sr/

(
2(c1−r)tr

)
: sr, tr ∈ oddZ

}
\ {X1} 2 ≤ r ≤ c1

(61)
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4.8.1. Proof The Sets in Family X Are Pairwise Disjoint. Using Proof by Mathematical Induction:

(i) If r = 1, then X1 =
{
s1/

(
2(c1−1)t1

)
: s1, t1 ∈ Z

}
is the only set defined in the family X , so the

family X of sets is pairwise disjoint.
(ii) Suppose, the family of sets Xc1 = {Xr : r ∈ {1, · · · , c1}}, for all r ∈ {1, · · · , c1}, are pairwise

disjoint.
Hence, suppose r = c1 + 1, where Xc1+1 = Xc1 ∪ {Xc1+1}. Note,

Xc1+1 =
{
sc1

/
(
2((c1+1)−c1)tc1

)
: sc1

, tc1
∈ oddZ

}
\ {X1} (62)

=
{
sc1

/
(
2(c1+1−c1)tc1

)
: sc1

, tc1
∈ oddZ

}
\ {X1} (63)

=
{
sc1

/
(
2((c1−c1)+1)tc1

)
: sc1

, tc1
∈ oddZ

}
\ {X1} (64)

=
{
sc1

/
(
2
(
2(c1−c1)

)
tc1

)
: sc1

, tc1
∈ oddZ

}
\ {X1} (65)

= {(sc1
/2)/ (tc1

) : sc1
, tc1

∈ oddZ} \ {X1} (66)

Since, sc1/2 for all odd integers sc1 is disjoint from all odd integers sr′ = (2sr′)/2 such
that r′ ≤ c1, hence Xc1+1 is pairwise disjoint.

4.9. Euler’s Totient Function. The totient function counts the number of positive integers up to a given
integer n which are coprime to n. This function be used to count the number of fractions with a denominator
less than n with a comprime numerator and denominator.

4.10. Equidistribution. A sequence of sets (tq)q∈Z is equidistributed in [α, β], when for all sub-intervals
[α′, β′] ⊆ [α, β].

lim
q→∞

|tq ∩ [α′, β′]|
|tq ∩ [α, β]|

=
β′ − α′

β − α

4.11. Conway Base-13 Function. Consider this definition of the Conway Base-13 function [7]:

(1) Expand x ∈ (0, 1) in base 13, using digits {0, 1, · · · , d,m, p} where d = 10. Note, for any
rational number which is a fully simplified fraction a/b such that b is a power of 13, there
exists two such expansions: a terminating expansion, and a non-terminating one ending
in repeated p digits. In such a case, use the terminating expansion.

(2) Let S ⊆ (0, 1) be the set of reals that is an expansion involving finitely many p, m and d
digits, such that the final d digit occurs after the final p and m digit. (We may require
that there be at least one digit 0− 9 between the final p and m digit, but this does not
seem necessary.) Then, every x ∈ S has a base 13 expansion of the form

0.x1x2 . . . xn [ p or m ] a1a2 . . . ak [ d ] b1b2 . . .

for some digit xj ∈ {0, . . . , p} and where the digits aj and bj are limited to {0, . . . , 9} for
all j. The square brackets above are intended for emphasis; and in particular, the n+ 1st

base-13 digits of x is the final occurance of either p or m in the expansion of x.
(3) For x ∈ S, we define f(x) by transliterating the string format above. We ignore the digits

x1 through xn, transliterate the p or m as a plus-sign and minus-sign, and d as a decimal
point. This yeilds a decimal expansion for a real number, either

+a1a2 . . . ak.b1b2 . . .

or

−a1a2 . . . ak.b1b2 . . .

according to whether the n+ 1st base-13 digit of x is a p or an m respectively. For x ∈ S,
we set f(x) to this number; for x ∈ S, we set f(x) = 0
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Note: this function is not computable, as there is no way to determine (in advance) whether the base-13
expansion of x ∈ (0, 1) has only finitely many occurrences of the digits p, m, or d. Even if one is provided
with a number which is promised to have only finitely many, in general one cannot know when they found
the last one. Regardless, if one is provided with a number x ∈ (0, 1) for which they know the location of the
final p, m, and d digits, they can compute f(x) very straightforwardly.
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