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Abstract. Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. We want a satisfying
average for all pathological f (e.g., a everywhere surjective f whose graph has zero Hausdorff measure in its

dimension) taking finite values only. If this is impossible, we wish to average a nowhere continuous f defined

on the rationals. The problem is that the expected value of these examples of f , w.r.t the Hausdorff measure
in its dimension, is undefined. Thus, take any chosen sequence of bounded functions converging to f with

the same satisfying and finite expected value.
Note, “satisfying” is explained in the leading question which uses rigorous versions of phrases in the

former paragraph and the “measure” of the sequence of each bounded functions’ graph which involves

minimal pair-wise disjoint covers of the graph with equal ε measure, sample points from each cover, paths of
line segments between sample points, the lengths of the line segments in the path, removed lengths which

are outliers, remaining lengths which are converted into a probability distribution, and the entropy of the
distribution. We also explain “satisfying” by defining the actual rate expansion of the sequence of each
bounded functions’ graph and the “rate of divergence” of the sequence compared to that of other sequences.

Keywords. Pathalogical Functions, Hausdorff measure, Expected Value, Function Space, Prevalent and Shy
Sets, Covers, Samples, Euclidean Distance, Entropy, Choice Function

1. Intro

Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. We want a satisfying average
for all pathological f taking finite values only. The problem is that the expected value of specific examples
of f (§2.1,§2.2), w.r.t the Hausdorff measure in its dimension, is undefined (§2.3). To fix this, we take the
expected value of a sequence of bounded functions converging to f (§2.3.2); however, depending on the
sequence of bounded functions chosen, the expected value could be one of several values (thm. 1). Hence, we
define a leading question (§3.1) that chooses sequences of bounded functions with the same satisfying and
finite expected value, such that the term “satisfying” is explained rigorously.

Note, the leading question (§3.1) was inspired by two problems (i.e., informal versions of thm. 2 and 5):

(1) If F ⊂ RA is the set of all f ∈ RA, where the expected value of f w.r.t the Hausdorff measure in its
dimension is finite, then F is shy (§2.4).

• If F ⊂ RA is shy, we say “almost no” element of RA lies in F
(2) If F ⊂ RA is the set of all f ∈ RA, where two sequences of bounded functions that converge to f have

different expected values, then F is prevelant (§2.4)
• If F ⊂ RA is prevelant, we say “almost all” elements of RA lies in F

In section §5, we clarify the leading question (§3.1) by applying the rigorous definitions of the leading
question to specific examples (§5.2.1). We also define a “measure” (§5.3.1,§5.3.2) of the sequence of each
bounded functions’ graph. This is crucial for defining a satisfying expected value, where the “measure” is
defined by the following:

(1) Covering each graph with minimal, pairwise disjoint sets of equal ε Hausdorff measure (§5.3.1, step 1)
(2) Taking a sample point from each cover (§5.3.1, step 2)
(3) Taking a “pathway of line segments” starting with sample point x0 to the sample point with the smallest

Euclidean distance from x0 (i.e., when more than one point has the smallest Euclidean distance to x0,
take either of those points). Next, repeat this process until the pathway intersects with every sample
point once (§5.3.1, step 3a)

Date: February 22, 2025.

1



2 BHARATH KRISHNAN

(4) Taking the length of each line segments in the pathway and remove the outliers which are more than
C > 0 times the interquartile range of the length of each line segment as ε→ 0 (§5.3.1, step 3b)

(5) Multiply the remaining lengths by a constant to get a probability distribution (§5.3.1, step 3c)
(6) Taking the entropy of the distribution (§5.3.1, step 3d)
(7) Taking the maximum entropy w.r.t all pathways (§5.3.1, step 3e)

We give examples of how to apply the “measure” (§5.3.3-§5.3.5), then define the actual rate of expansion of
the sequence of each bounded functions’ graph (§5.4).

Finally, we answer the leading question in §6. Since the answer is complicated, is likely incorrect, and the
leading question might not admit an unique expected value, it is best to keep refining the leading question
(§3.1) rather than worrying about an immediate solution.

2. Formalizing the Intro

Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. Let dimH(·) be the Hausdorff
dimension, where HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra.

We want an unique, satisfying average for each of the following functions (§2.1,§2.2) taking finite values
only. We explain the method of averaging in later sections, starting from §2.3.1.

2.1. First special case of f . If the graph of f is G, we want an explicit f where:

(1) The function f : A ⊆ Rn → R is everywhere surjective
Let (A,T) be a standard topology. A function f : A→ R is everywhere surjective from
A to R, if f [V ] = R for every V ∈ T.

(2) HdimH(G)(G) = 0

2.1.1. Potential Example. If A = R, using this post [3]:

Consider a Cantor set C ⊆ [0, 1] with Hausdorff dimension 0 [4]. Now consider a countable
disjoint union ∪m∈NCm such that each Cm is the image of C by some affine map and every
open set O ⊆ [0, 1] contains Cm for some m. Such a countable collection can be obtained by
e.g. at letting Cm be contained in the biggest connected component of [0, 1]\(C1∪· · ·∪Cm−1)
(with the center of Cm being the middle point of the component).

Note that ∪mCm has Hausdorff dimension 0, so (∪mCm) × [0, 1] ⊆ R2 has Hausdorff
dimension one [2].

Now, let g : [0, 1] → R such that g|Cm is a bijection Cm → R for all m (all of them
can be constructed from a single bijection C → R, which can be obtained without choice,
although it may be ugly to define) and outside ∪mCm let g be defined by g(x) = h(x), where
h : [0, 1] → R has a graph with Hausdorff dimension 2 [13] (this doesn’t require choice either).

Then the function g has a graph with Hausdorff dimension 2 and is everywhere surjective,
but its graph has Lebesgue measure 0 because it is a graph (so it admits uncountably many
disjoint vertical translates).

Note, we can make the construction with union of Cm rather explicit as follows. Split
the binary expansion of x as strings of size with a power of two, say x = 0.1101000010 . . .
becomes (s0, s1, s2, . . .) = (1, 10, 1000, . . .). If this sequence eventually contains only strings of
the form 0 · · · 0 or 1 · · · 1, say after sk, then send it to y =

∑
i>0 ϵi2

−i, where sk+i = ϵi · · · ϵi.
Otherwise, send it to the explicit continuous function h given by the linked article [13]. This
will give you something from [0, 1) → [0, 1)

Finally, compose an explicit (reasonable) bijection from [0, 1) to R. In your case, the
construction can be easily adapted so that the [0, 1] or [0, 1) target space is actually (0, 1),
then compose with t 7→ (1− 2x)/(x2 − x).

In case we cannot obtain a unique, satisfying average (§3.1) from §2.1.1, consider the following:

2.2. Second special case of f . Suppose, we define A = Q, where f : A→ R, such that:

f(x) =

{
1 x ∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0}
0 x ̸∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0}

(1)
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In the next section, we state why we want §2.1 and §2.2.

2.3. Attempting to Analyze/Average f . Suppose, the expected value of f w.r.t the Hausdorff measure
in its dimension is:

E[f ] =
1

HdimH(A)(A)

∫
A

f dHdimH(A) (2)

Then, using §2.1.1, the integral of f w.r.t the Hausdorff measure in its dimension is undefined: i.e., the graph
of f has Hausdorff dimension 2 with a zero 2-d Hausdorff measure. Hence, E[f ] is undefined.

Moreover, observe that in §2.2, f is nowhere continuous and defined on a countably infinite set, which
means depending on the enumeration of A or the sequence {ar}∞r=1, where the expected value of f (when it
exists) is:

E[f ] = lim
t→∞

f(a1) + f(a2) + · · ·+ f(at)

t
(3)

the expected value E[f ] is any number from inf f to sup f . Hence, we need a specific enumeration that gives
a unique, satisfying, and finite expected value, generalizing this process to nowhere continuous functions
defined on uncountable domains.

Thus, we want the “expected value of chosen sequences of bounded functions converging to f with the
same satisfying and finite expected value” which we describe rigorously in later sections; however, consider
the following definitions beginning with §2.3.1:

2.3.1. Definition of sequences of Functions Converging to f . Let n ∈ N and suppose function f : A ⊆ Rn → R,
where A and f are Borel.
The sequence of functions (fr)r∈N, where (Ar)r∈N is a sequence of sets and functions fr : Ar → R, converges
to f when:

For any x ∈ A, there exists a sequence x ∈ Ar s.t. x → (x1, · · ·, xn) and fr(x) → f(x1, · · ·, xn).
This is equivelant to:

(fr, Ar) → (f,A)

2.3.2. Expected Value of Sequences of Functions Converging to f . Hence, suppose:

• (fr, Ar) → (f,A) (§2.3.1)
• || · || is the absolute value
• dimH(·) be the Hausdorff dimension
• HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra
• the integral is defined, w.r.t the Hausdorff measure in its dimension

The expected value of (fr)r∈N is a real number E[fr], when the following is true:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣∣∣∣ 1

HdimH(Ar)(Ar)

∫
Ar

fr dHdimH(Ar) − E[fr]
∣∣∣∣∣∣∣∣ < ϵ

)
(4)

when no such E[fr] exists, E[fr] is infinite or undefined. (If the graph of f has zero Hausdorff measure in its

dimension, replace HdimH(Ar) with the generalized Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)

2.3.3. The Set of All Bounded Functions/Sets. Let n ∈ N and suppose the function f : A ⊆ Rn → R, where
A and f are Borel. Then, we define the following:

B(X) is the set of all bounded Borel subsets of the set X

B(X) is the set of all bounded Borel functions with domain X

For example, B(Rn) is the set of all bounded Borel subsets of Rn and B(R) is the set of all bounded Borel
functions on R. Note, however:

Theorem 1. For all r, v ∈ N, suppose Ar, Bv ∈ B(Rn), where fr ∈ B(Ar) and gv ∈ B(Bv). There exists a
f ∈ RA, where (fr, Ar), (gv, Bv) → (f,A) and E[fr] ̸= E[gv] (§2.3.2)

For example, the expected values of the sequences of bounded functions converging to f (§2.3.1, §2.3.2) in
§2.1 and §2.2 satisfy thm. 1. For simplicity, we illustrate this with §2.2.
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2.3.4. Example Illustrating Theorem 1. For the second case of Borel f : A ⊆ Rn → R (§2.2), where A = Q,
and:

f(x) =

{
1 x ∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0}
0 x ̸∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0}

(5)

suppose:

(Ar)r∈N = ({c/r! : c ∈ Z,−r · r! ≤ c ≤ r · r!})r∈N

and

(Bv)v∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ v,−d · v ≤ c ≤ d · v})v∈N

where for fr : Ar → R,
fr(x) = f(x) for all x ∈ Ar (6)

and for gv : Bv → R
gv(x) = f(x) for all x ∈ Bv (7)

Note, for all r, v ∈ N:
• sup(Ar) = r
• inf(Ar) = −r
• sup(Bv) = v
• inf(Bv) = −v
• Since f is bounded, fr and gv are bounded

Hence, Ar, Bv ∈ B(Rn), where fr ∈ B(Ar) and gv ∈ B(Bv). Also, the set-theoretic limit of (Ar)r∈N and
(Bv)v∈N is A = Q: i.e.,

lim sup
r→∞

Ar =
⋂
r≥1

⋃
q≥r

Aq

lim inf
r→∞

Ar =
⋃
r≥1

⋂
q≥r

Aq

where:

lim sup
r→∞

Ar = lim inf
r→∞

Ar = A = Q

lim sup
v→∞

Bv = lim inf
v→∞

Bv = A = Q

(We’re unsure how to prove the set-theoretic limits; however, a mathematician specializing in limits should be
able to check.)

Therefore, (fr, Ar), (gv, Bv) → (f,A) (thm. 1).
Now, suppose we want to average (fr)r∈N and (gv)v∈N, which we denote E[fr] and E[gv]. Note, this is the

same as computing the following (i.e., the cardinality is | · | and the absolute value is || · ||):

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣∣∣∣ 1

|Ar|

∫
Ar

f dH0 − E[fr]
∣∣∣∣∣∣∣∣ < ϵ

)
=⇒ (8)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)

(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

|Ar|
∑
x∈Ar

f(x)− E[fr]

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)

∀(ϵ > 0)∃(N ∈ N)∀(v ∈ N)
(
v ≥ N ⇒

∣∣∣∣∣∣∣∣ 1

|Bv|

∫
Bv

f dH0 − E[gv]
∣∣∣∣∣∣∣∣ < ϵ

)
=⇒ (9)

∀(ϵ > 0)∃(N ∈ N)∀(v ∈ N)

(
v ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

|Bv|
∑
x∈Bv

f(x)− E[gv]

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)

Thus, if we assume E[fr] = 1 in eq. 8, using [8]:
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The sum
∑
x∈A⋆ f(x) counts the number of fractions with an even denominator and an odd

numerator in set A⋆, after canceling all possible factors of 2 in the fraction. Let us consider
the first case. We can write:∣∣∣∣∣

∣∣∣∣∣1− |Ar|−1
∑
x∈Ar

f(x)

∣∣∣∣∣
∣∣∣∣∣ =

(
|Ar| −

∑
x∈Ar

f(x)

)
/|Ar| = H(r)/|Ar|

where H(r) counts the fractions x = c/r! in Ar that are not counted in
∑
x∈A⋆ f(x), i.e.,

for which f(x) = 0. This is the case when the denominator is odd after the cancellation
of the factors of 2, i.e., when the numerator c has a number of factors of 2 greater than
or equal to that of r!, which we will denote by V (r) := v2(r!) a.k.a the 2-valuation of r!,
oeis:A11371(r) = r −O(ln(r)) [10]. That means, c must be a multiple of 2V (r). The number
of such c with −r · r! ≤ c ≤ r · r is simply the length of that inteval, equal to |Ar| = 2r(r!)+1,
divided by 2V (r). Thus,∣∣∣∣∣

∣∣∣∣∣1− |Ar|−1
∑
x∈Ar

f(x)

∣∣∣∣∣
∣∣∣∣∣ = [|Ar|/2V (r)]/|Ar| ∼ 1/2V (r) = 1/2n−O(logn)

This obviously tends to zero, proving E[fr] = 1

Last, we need to show E[gv] = 1/3 in eq. 9, where E[fr] ̸= E[gv], proving theorem 1.

Concerning the second case [8], it is again simpler to consider the complementary set of
x ∈ Bv such that the denominator is odd when all possible factors of 2 are canceled. We
can see that for v = 2p − 1, and these obviously include all those we had for smaller
v. The “new” elements in Bv with v = 2p − 1 are those that have the denominator
d = 2p − 1 when written in lowest terms. Their number is equal to the number of κ < d,
gcd(κ, d) = 1, which is given by Euler’s ϕ function. Since we also consider negative fractions,
we have to multiply this by 2. Including x = 0, we have G(v) = | {x ∈ Bv|f(x) = 0} | =
1 + 2

∑
0≤κ≤v/2 ϕ(2κ+ 1). There is no simple explicit expression for this (cf. oeis:A99957

[11]), but we know that G(v) = 1 + 2 ·A99957(v/2) ∼ 2 · 8(v/2)2/π2 = 4v2/π2 [11]. On the
other hand, the total number of all elements of Bv is |Bv| = 1 + 2

∑
1≤κ≤v ϕ(κ), since each

time we increase v by 1, we have the additional fractions with the new denominator d = v
and the numerators are coprime with d, again with the sign + or −. From oeis:A002088
[9] we know that

∑
1≤κ≤v ϕ(κ) = 3v2/π2 +O(v log v), so |Bv| ∼ 6v2/π2, which finally gives

|Bv|−1
∑
x∈Bv f(x) = (|Bv| −G(v))/|Bv| ∼ (6− 4)/6 = 1/3 as desired.

Hence, E[gv] = 1/3 and E[fr] ̸= E[gv] proving thm. 1. Thus, consider:

2.4. Definition of Prevalent and Shy Sets. A Borel set E ⊂ X is said to be prevalent if there exists a
Borel measure µ on X such that:

(1) 0 < µ(C) <∞ for some compact subset C of X, and
(2) the set E+x has full µ-measure (that is, the complement of E+x has measure zero) for all x ∈ X.

More generally, a subset F of X is prevalent if F contains a prevalent Borel Set.
Moreover:

• The complement of a prevelant set is a shy set.

Hence:

• If F ⊂ X is prevelant, we say “almost every” element of X lies in F .
• If F ⊂ X is shy, we say “almost no” element of X lies in F .

2.5. Motivation for Averaging §2.1 and §2.2. If E[f ] is the expected value of f , w.r.t the Hausdorff
measure in its dimension,

E[f ] =
1

HdimH(A)(A)

∫
A

f dHdimH(A) (10)

Consider the following problems:

Theorem 2. If F ⊂ RA is the set of all f ∈ RA, where E[f ] is finite, then F is shy (§2.4).
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Note 3 (Proof theorem 2 is true). We follow the argument presented in Example 3.6 of this paper [12],
take X := L0(A) (measurable functions over A), let P denote the one-dimensional subspace of A consisting of
constant functions (assuming the Lebesgue measure on A) and let F := L0(A) \ L1(A) (measurable functions
over A without finite integral). Let λP denote the Lebesgue measure over P , for any fixed f ∈ F :

λP

({
α ∈ R

∣∣∣∣ ∫
A

(f + α)dµ <∞
})

= 0

Meaning P is a one-dimensional, so f is a 1-prevalent set.

Note 4 (Way of Approaching Theorem 2). For all r ∈ N, suppose that Ar ∈ B(Rn) and fr ∈ B(Ar). If
F ⊂ RA is the set of all f ∈ RA, where there exists Ar ∈ B(Rn) and fr ∈ B(Ar) such that (fr, Ar) → (f,A)
and E[fr] is finite (§2.3.2), then F should be prevalent (§2.4) or neither prevalent nor shy (§2.4).

Theorem 5. For all r, v ∈ N, suppose Ar, Bv ∈ B(Rn), where fr ∈ B(Ar) and gv ∈ B(Bv). When F ⊂ RA
is the set of all f ∈ RA, where (fr, Ar), (gv, Bv) → (f,A) and E[fr] ̸= E[gv], then F is prevalent (§2.4).

Note 6 (Possible method to proving theorem 5 true). For all r, v ∈ N, suppose Ar, Bv ∈ B(Rn) where
fr ∈ B(Ar) and gv ∈ B(Bv). Therefore, suppose Q ⊂ RA is the set of all f ∈ RA whose lines of symmetry
intersect at one point, where if (fr, Ar), (gv, Bv) → (f,A), then E[fr] = E[gv]. In addition, Q′ ⊂ RA is the set
of symmetric f ∈ RA which clearly forms a shy subset of RA. Since Q ⊂ Q′, we have proven that Q is also
shy (i.e., a subset of a shy set is also shy). Since the complement of the shy set Q is prevalent, F = RA \Q
is prevalent, such that for all f ∈ F , (fr, Ar), (gv, Av) → (f,A) and E[fr] ̸= E[gv]. If this is correct, we have
partially proven thm. 5.

Note 7 (Way of Approaching Theorem 5). For all r ∈ N, suppose B ⊂ B(Rn) is an arbitrary set, where
Ar ∈ B and B ⊂ B(Ar) is an arbitrary set such that fr ∈ B. If F ⊂ RA is the set of all f ∈ RA, where
(fr, Ar) → (f,A) and E[fr] is unique, then F should be prevelant (§2.4).

Since thm. 2 and 5 are true, we need to solve both theorems at once with the following:

2.5.1. Approach.

For all r ∈ N, suppose B ⊂ B(Rn) is an arbitrary set, where Ar ∈ B and B ⊂ B(Ar)
is an arbitrary set such that fr ∈ B. If F ⊂ RA is the collection of all f ∈ RA, where
(fr, Ar) → (f,A) and E[fr] is unique, satisfying (§3) and finite, then F should be:

(1) a prevalent (§2.4) subset of RA
(2) If not prevalent (§2.4) then neither prevalent (§2.4) nor shy (§2.4) subset of RA.

3. Attempt to Define “Satisfying” in The Approach of §2.5.1

3.1. Leading Question. To define satisfying in the blockquote of the §2.5.1, we ask the leading question...

Suppose, for all r, v ∈ N, there exists arbitrary set B ⊂ B(Rn), where A⋆r ∈ B and B ⊂ B(A⋆r)
(§2.3.3) such that:

(A) f⋆r ∈ B
(B) A⋆⋆v ∈ B(Rn) \ B and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B)
(C) (G⋆r)r∈N = (graph(f⋆r ))r∈N is the sequence of the graph of each f⋆r (§2.3.1)
(D) □ is the logical symbol for “it’s necessary”
(E) C is a reference point in Rn+1 (e.g., the origin)
(F) E is the fixed, expected rate of expansion of (G⋆r)r∈N w.r.t a reference point C: e.g., E = 1

(§3.1.C, §3.1.E)
(G) E(C,G⋆r) is the actual rate of expansion of (G⋆r)r∈N w.r.t a reference point C (§3.1.C,

§3.1.E, §5.4)

Does there exist an unique choice function, which for all r ∈ N, chooses an unique set
B ⊂ B(Rn), where A⋆r ∈ B and a unique set B ⊂ B(A⋆r) such that f⋆r ∈ B, where:
(1) (f⋆r , A

⋆
r) → (f,A) (§2.3.1)
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(2) For all v ∈ N, where for all A⋆⋆v ∈ B(Rn) \ B and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B), assuming
(f⋆⋆v , A⋆⋆v ) → (f,A), the “measure” (§5.3.1, §5.3.2) of (G⋆r)r∈N = (graph(f⋆r ))r∈N (§3.1.C)
must increase at a rate linear or superlinear to that of (G⋆⋆v )v∈N = (graph(f⋆⋆v ))v∈N
(§3.1.C)

(3) E[f⋆r ] is unique and finite (§2.3.2)
(4) For someA⋆r ∈ B and f⋆r ∈ B satisfying (1), (2) and (3), when f is unbounded (i.e, skip (4)

when f is bounded), for all s ∈ N and for any set B′ ⊂ B(Rn), where A⋆⋆⋆s ∈ B′, and for
any set B′ ⊂ B(A⋆⋆⋆s ), where ⋆ 7→ ⋆ ⋆ ⋆, r 7→ s, B 7→ B′, and B 7→ B′ in (1), (2) and (3),
s.t.¬□(E[f⋆r ] = E[f⋆⋆⋆s ]) (§2.3.1, §2.3.2, §3.1.D), when f⋆⋆⋆s ∈ B′ satisfies (1), (2) and (3):

• If the absolute value is || · || and the (n+1)-th coordinate ofC (§3.1.E) isxn+1, ||E[f⋆r ]−
xn+1|| ≤ ||E[f⋆⋆⋆s ]− xn+1|| (§2.3.1, §2.3.2)

• If r ∈ N, then for all linear s1 : N → N, where s = s1(r) and the Big-O notation isO,
there exists a functionK : R → R, where the absolute value is || · || and (§3.1.F-G):

||E(C,G⋆r)− E|| =O(K(||E(C,G⋆⋆⋆s )− E||))
=O(K(||E(C,G⋆⋆⋆s1(r)

)− E||))
such that:

0 ≤ lim
x→+∞

K(x)/x < +∞

In simpler terms, “the rate of divergence” of ||E(C,G⋆r)−E|| (§3.1.F-G) is less than or
equal to “the rate of divergence” of ||E(C,G⋆⋆⋆s )− E|| (§3.1.F-G).

(5) When set F ⊂ RA is the set of all f ∈ RA, where a choice function chooses a collection
B ⊂ B(Rn), whereA⋆r ∈ B and B ⊂ B(A⋆r) such that f⋆r ∈ B satisfies (1), (2), (3) and (4),
then F should be:

(a) a prevelant (§2.4) subset ofRA
(b) If not (a), then neither a prevalent (§2.4) nor shy (§2.4) subset ofRA

(6) Out of all choice functions which satisfy (1), (2), (3), (4) and (5), we choose the one with the
simplest form, meaning for each choice function fully expanded, we take the one with the
fewest variables/numbers?

(In case this is unclear, see §5.) We are convinced E[f⋆r ] in (§3.1 crit. 3) isn’t unique nor satisfying enough to
answer the approach of §2.5.1. Still, adjustments are possible by changing the criteria or by adding new criteria to
the question.

4. Question Regarding My Work

Most don’t have time to address everything in my research, hence I ask the following:

Is there a research paper which already solves the ideas I’m woring on? (Non-published papers,
such as mine [6], don’t count.)

5. Clarifying §3

See §3.1 once reading §5, and consider the following:

Is there a simpler version of the definitions below?

5.1. Example of sequences of Bounded Functions Converging to f (§2.3.1). The sequence of bounded
functions (fr)r∈N, where (Ar)r∈N is a sequence of bounded sets and function fr : Ar → R, converges to Borel
f : A ⊆ Rn → Rwhen:

For any x ∈ A there exists a sequence x ∈ Ar s.t. x → (x1, · · ·, xn) and fr(x) → f(x1, · · ·, xn)
This is equivalent to:

(fr, Ar) → (f,A)

Example 0.1 (Example of §2.3.1). If A = R and f : A → R, where f(x) = 1/x, then an example of
(fr)r∈N, such that fr : Ar → R is:

(1) (Ar)r∈N = ([−r,−1/r] ∪ [1/r, r])r∈N
(2) fr(x) = 1/x for x ∈ Ar
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Example 0.2 (More Complex Example). If A = R and f : A→ R, where f(x) = x, then an example of
(fr)r∈N, such that fr : Ar → R is:

(1) (Ar)r∈N = ([−r, r])r∈N
(2) fr(x) = x+ (1/r) sin(x) for x ∈ Ar

5.2. Expected Value of Bounded Sequence of Functions. The expected value of (fr)r∈N is a real number
E[fr], when the following is true:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣∣∣∣ 1

HdimH(Ar)(Ar)

∫
Ar

fr dHdimH(Ar) − E[fr]
∣∣∣∣∣∣∣∣ < ϵ

)
(11)

otherwise when no such E[fr] exists, E[fr] is infinite or undefined. (If the graph of f has zero Hausdorff measure

in its dimension, replaceHdimH(Ar) with the generalized Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)

5.2.1. Example. Using example 0.1, when (fr)r∈N = ({(x, 1/x) : x ∈ [−r,−1/r] ∪ [1/r, r]})r∈N where:

(1) (Ar)r∈N = ([−r,−1/r] ∪ [1/r, r])r∈N
(2) fr(x) = 1/x for x ∈ Ar

If we assume E[fr] = 0:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

HdimH(Ar)(Ar)

∫
Ar

fr dHdimH(Ar) − E[fr ]

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(12)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒ (13)∣∣∣∣∣

∣∣∣∣∣ 1

HdimH([−r,−1/r]∪[1/r,r])([−r,−1/r] ∪ [1/r, r])

∫
[−r,−1/r]∪[1/r,r]

1/x dHdimH([−r,−1/r]∪[1/r,r]) − 0

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(14)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

H1([−r,−1/r] ∪ [1/r, r])

∫
[−r,−1/r]∪[1/r,r]

1/x dH1

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(15)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

(−1/r − (−r)) + (r − 1/r)

(∫ −1/r

−r
1/x dx +

∫ r
1/r

1/x dx

)∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(16)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

(r − 1/r) + (−1/r + r)

(
ln(||x||) + C

∣∣∣−1/r

−r
+ ln(||x||) + C

∣∣∣r
1/r

)∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(17)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

(r − 1/r) + (−1/r + r)
(ln(|| − r||) − ln(|| − 1/r||) + ln(||r||) − ln(||1/r||))

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(18)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣∣
∣∣∣∣∣ 1

2r − 2/r
· 4 ln(r)

∣∣∣∣∣
∣∣∣∣∣ < ϵ

)
(19)

To prove eq. 19 is true, recall:

r ≪ er/2, e1/r ≪ er (20)

r ≪ er/2, e1/(2r) ≪ er/2 (21)

re1/(2r) ≪ er/2 (22)

r ≪ er/2/e1/(2r) (23)

r ≪ er/2−1/(2r) (24)

ln(r) ≪ r/2− 1/(2r) (25)

4 ln(r) ≪ 2r − 2/r (26)

Hence, for all ε > 0

4 ln(r) < ε(2r − 2/r) (27)

4 ln(r)

2r − 2/r
< ε (28)∣∣∣∣∣∣∣∣ 4 ln(r)

2r − 2/r

∣∣∣∣∣∣∣∣ < ε (29)
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Since eq. 19 is true,E[fr] = 0. Note, if we simply took the average of f from (−∞,∞), using the improper integral,
the expected value:

lim
(x1,x2,x3,x4)→(−∞,0−,0+ ,+∞)

1

(x4 − x3) + (x2 − x1)

(∫ x2

x1

1

x
dx+

∫ x4

x3

1

x
dx

)
= (30)

lim
(x1,x2,x3,x4)→(−∞,0−,0+ ,+∞)

1

(x4 − x3) + (x2 − x1)

(
ln(||x||) + C

∣∣∣x2
x1

+ ln(||x||) + C
∣∣∣x4
x3

)
= (31)

lim
(x1,x2,x3,x4)→(−∞,0−,0+ ,+∞)

1

(x4 − x3) + (x2 − x1)
(ln(||x2||)− ln(||x1||) + ln(||x4||)− ln(||x3||)) (32)

is +∞ (when x2 = 1/x1, x3 = 1/x4, and x1 = exp
(
x24
)
) or −∞ (when x2 = 1/x1, x3 = 1/x4, and x4 =

− exp
(
x21
)
), making E[f ] undefined. (However, using eq. 12-19, we get the E[fr] = 0 instead of an undefined

value.)

5.3. Defining the “Measure”.

5.3.1. Preliminaries. We define the “measure” of (G⋆r)r∈N, in §5.3.2, which is the sequence of the graph of each
f⋆r (§3.1.C). To understand this “measure”, continue reading.

(1) For every r ∈ N, “over-cover”G⋆r with minimal, pairwise disjoint sets of equalHdimH(G⋆r) measure.
(We denote the equal measures ε, where the former sentence is defined C(ε,G⋆r , ω): i.e., ω ∈ Ωε,r
enumerates all collections of these sets coveringG⋆r . In case this step is unclear, see §8.1. Moreover,
when there exists a r ∈ N, whereHdimH(G⋆r)(G⋆r) = 0, replace the Hausdorff measureHdimH(G⋆r) with

the generalized Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)
(2) For every ε, r and ω, take a sample point from each set in C(ε,G⋆r , ω). The set of these points is

“the sample” which we define S(C(ε,G⋆r , ω), ψ): i.e., ψ ∈ Ψε,r,ω enumerates all possible samples of
C(ε,G⋆r , ω). (If this is unclear, see §8.2.)

(3) For every ε, r, ω and ψ,
(a) Take a “pathway” of line segments: we start with a line segment from arbitrary point x0 of

S(C(ε,G⋆r , ω), ψ) to the sample point with the smallest (n+ 1)-dimensional Euclidean distance to
x0 (i.e., whenmore than one sample point has the smallest (n+1)-dimensional Euclidean distance
to x0, take either of those points). Next, repeat this process until the “pathway” intersects with
every sample point once. (In case this is unclear, see §8.3.1.)

(b) Take the set of the length of all segments in (a), except for lengths that are outliers (i.e., for any
constant C > 0, the outliers are more than C times the interquartile range of the length of all line
segments as r → ∞ or ε→ 0). Define this L(x0,S(C(ε,G⋆r , ω), ψ)). (If this is unclear, see §8.3.2.)

(c) Multiply remaining lengths in the pathway by a constant so they add up to one (i.e., a probability
distribution). This will be denoted P(L(x0,S(C(ε,G⋆r , ω), ψ))). (In case this is unclear, see §8.3.3)

(d) Take the shannon entropy [7, p.61-95] of step (c). We define this:

E(P(L(x0,S(C(ε,G⋆r , ω), ψ)))) =
∑

x∈P(L(x0,S(C(ε,G⋆r ,ω),ψ)))

−x log2 x

which will be shortened to E(L(x0,S(C(ε,G⋆r , ω), ψ))). (If this is unclear, see §8.3.4.)
(e) Maximize the entropy w.r.t all ”pathways”. This we will denote:

E(L(S(C(ε,G⋆r , ω), ψ))) = sup
x0∈S(C(ε,G⋆r ,ω),ψ)

E(L(x0,S(C(ε,G⋆r , ω), ψ)))

(In case this is unclear, see §8.3.5.)
(4) Therefore, themaximum entropy, using (1) and (2) is:

Emax(ε, r) = sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

E(L(S(C(ε,G⋆r , ω), ψ)))

5.3.2. What Am I Measuring? We define (G⋆r)r∈N and (G⋆⋆v )v∈N, which respectively are sequences of the graph
for each of the bounded functions f⋆r and f⋆⋆v (§3.1.C). Hence, for constant ε and cardinality | · |
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(a) Using (2) and (3e) of section 5.3.1, suppose:

|S(C(ε,G⋆r , ω), ψ)| =

inf
{∣∣S(C(ε,G⋆⋆v , ω

′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆v , ω
′), ψ′))) ≥ E(L(S(C(ε,G⋆r , ω), ψ)))

}
then (using |S(C(ε,G⋆r , ω), ψ)|) we get:

α (ε, r, ω, ψ) = |S(C(ε,G⋆r , ω), ψ)|/ |S(C(ε,G⋆r , ω), ψ))|
(b) Also, using (2) and (3e) of section 5.3.1, suppose:

|S(C(ε,G⋆r , ω), ψ)| =

sup
{∣∣S(C(ε,G⋆⋆v , ω

′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆v , ω
′), ψ′))) ≤ E(L(S(C(ε,G⋆r , ω), ψ)))

}
then (using |S(C(ϵ,G⋆r , ω), ψ)|) we also get

α (ε, r, ω, ψ) = |S(C(ε,G⋆r , ω), ψ)|/ |S(C(ε,G⋆r , ω), ψ))|

(1) If using α (ϵ, r, ω, ψ) and α (ϵ, r, ω, ψ) we have:

1 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) , lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) < +∞

then what I’m measuring from (G⋆r)r∈N increases at a rate superlinear to that of (G⋆⋆v )v∈N.
(2) If using equationsα (ε, v, ω, ψ) andα (ε, v, ω, ψ) (where, usingα (ε, r, ω, ψ) andα (ε, r, ω, ψ), we swap rwith

v andG⋆r withG
⋆⋆
v ) we get:

1 < lim sup
ε→0

lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) , lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) < +∞

then what I’m measuring from (G⋆r)r∈N increases at a rate sublinear to that of (G⋆⋆v )v∈N.

(3) If using equations α (ε, r, ω, ψ), α (ε, r, ω, ψ), α (ε, v, ω, ψ), and α (ε, v, ω, ψ), we both have:

(a) lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ)or lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ)areequal tozero,

one or +∞
(b) lim sup

ε→0
lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ)or lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ)areequaltozero,

one or +∞
then what I’m measuring from (G⋆r)r∈N increases at a rate linear to that of (G⋆⋆v )v∈N.

5.3.3. Example of The “Measure” of (G⋆r) Increasing at Rate Super-linear to that of (G⋆⋆v ). Suppose, we have
function f : A→ R, whereA = Q ∩ [0, 1], and:

f(x) =

{
1 x ∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]

0 x ̸∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]
(33)

such that:

(A⋆r)r∈N = ({c/r! : c ∈ Z, 0 ≤ c ≤ r!})r∈N

and

(A⋆⋆v )v∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ v, 0 ≤ c ≤ v})v∈N

where for f⋆r : A⋆r → R,
f⋆r (x) = f(x) for all x ∈ A⋆r (34)

and f⋆⋆v : A⋆⋆v → R
f⋆⋆v (x) = f(x) for all x ∈ A⋆⋆v (35)

Hence, when (G⋆r)r∈N is:

(G⋆r)r∈N = ({(x, f⋆r (x)) : x ∈ A⋆r})r∈N (36)

and (G⋆⋆v )v∈N is:

(G⋆⋆v )v∈N = ({(x, f⋆⋆v (x)) : x ∈ A⋆⋆v })v∈N (37)

Note, the following:

Since ε > 0 andA = Q ∩ [0, 1] is countably infinite, there exists minimum εwhich is 1. Therefore, we don’t
need ε→ 0. We also maximize E(L(S(C(ε,G⋆r , ω), ψ))) (§5.3.1 step 3e) by the following procedure:
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(1) For every r ∈ N, group (x, y) ∈ G⋆r into (x, f
⋆
r (x)), where x has an even denominator when simplified: i.e.,

S1,r = {(x, f⋆r (x)) : x ∈ A⋆r ∩ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]}

then group (x, y) ∈ G⋆r into (x, f
⋆
r (x)), where x has an odd denominator when simplified: i.e.,

S2,r = {(x, f⋆r (x)) : x ∈ A⋆r ∩ (Q \ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0}) ∩ [0, 1]}

(2) Arrange the points in S1,r from least to greatest and take the 2-d Euclidean distance between each pair of
consecutive points in S1,r. In this case, since the points lie on y = 1, take the absolute difference between the
x-coordinates of S1,r, and then call thisD1,r. (Note, this is similar to §5.3.1 step 3a).

(3) Repeat step (2) for S2,r, then call thisD2,r. (Note, all point of S2,r lie on y = 0.)

(4) Remove any outliers fromDr = D1,r∪D2,r∪{d(( r!−1
r! , 1), (1, 0))} (i.e., d is the 2-dEuclidean distance between

points ( r!−1
r! , 1) and (1, 0)). Note, in this case,D2,r and {d(( r!−1

r! , 1), (1, 0))} should be outliers (i.e., for any

C > 0, the lengths ofD2,r and {d(( r!−1
r! , 1), (1, 0))} aremore thanC times the interquartile range of the lengths

ofDr as r → ∞) leaving us withD1,r.
(5) Multiply the remaining lengths in the pathway by a constant so they add up to one. (See P[r] of code 1 for an

example)
(6) Take the entropy of the probability distribution. (See entropy[r] of code 1 for an example.)

We can illustrate this process with the following code:

Code 1. Illustration of step (1)-(6)

(∗We’ re using Mathematica∗)

Clear [ ”∗Global ‘∗ ” ]

A[ r ] := A[ r ] = Range [ 0 , r ! ] / ( r ! )

(∗Below i s s tep 1∗)
S1 [ r ] :=

S1 [ r ] = Sort [ Select [A[ r ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 1 &] ]

S2 [ r ] :=

S2 [ r ] = Sort [ Select [A[ r ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 0 &] ]

(∗Below i s s tep 2∗)
Dist1 [ r ] := Dist1 [ r ] = D i f f e r e n c e s [ S1 [ r ] ]

(∗Below i s s tep 3∗)
Dist2 [ r ] := Dist2 [ r ] = D i f f e r e n c e s [ S2 [ r ] ]

(∗Below i s s tep 4∗)
NonOutl iers [ r ] :=

NonOutl iers [ r ] = Dist1 [ r ] (∗We exclude Dist2 [ r ] s ince i t ’ s an ou t l i e r ∗)

(∗Below i s s tep 5∗)
P[ r ] := P[ r ] = NonOutl iers [ r ] /Total [ NonOutl iers [ r ] ]

(∗Below i s s tep 6∗)
entropy [ r ] := entropy [ r ] = Total [−P[ r ] Log [ 2 , P [ r ] ] ]

Taking Table[{r,entropy[r]},{r,3,8}], we get:

Code 2. Output of Table[{r,entropy[r]},{r,3,8}]
Clear [ ”∗Global ‘∗ ” ]

{{{3 ,1} , {4 ,(2 Log [ 1 1 ] ) / ( 1 1 Log [ 2 ] ) + (9 Log [ 2 2 ] ) / ( 1 1 Log [ 2 ] ) } ,

{5 ,(14 Log [ 5 9 ] ) / ( 5 9 Log [ 2 ] ) + (45 Log [ 1 1 8 ] ) / ( 5 9 Log [ 2 ] ) } ,

{6 ,(44 Log [ 3 5 9 ] ) / ( 3 59 Log [ 2 ] ) + (315 Log [ 7 1 8 ] ) / ( 3 59 Log [ 2 ] ) } ,

{7 ,(314 Log [ 2 519 ] ) / ( 2519 Log [ 2 ] ) + (2205 Log [ 5 038 ] ) / ( 2519 Log [ 2 ] ) } ,

{8 ,(314 Log [ 2 0159 ] ) / (20159 Log [ 2 ] ) + (19845 Log [ 4 0318 ] ) / (20159 Log [ 2 ] )}}}

and notice when:

(1) c(r) = (r!)/2− 1
(2) {b(4) 7→ 9, b(5) 7→ 45, b(6) 7→ 315, b(7) 7→ 2205, b(8) 7→ 19845}
(3) a(r) + b(r) = c(r)
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the output of code 2 can be defined:

a(r) log2(c(r))

c(r)
+
b(r) log(2c(r)))

c(r)
=
a(r) log2(c(r)) + b(r) log(2c(r))

c(r)
(38)

Hence, since a(r) = c(r)− b(r) = (r!)/2− 1− b(r):

a(r) log2(c(r)) + b(r) log(2c(r))

c(r)
= (39)

(r!/2− 1− b(r)) log2(c(r)) + b(r) log2(2c(r))

c(r)
= (40)

(r!/2) log2(c(r))− log2(c(r))− b(r) log2(r) + b(r) log2(c(r)) + b(r) log2(2)

c(r)
= (41)

(r!/2) log2(c(r))− log2(c(r)) + b(r)

c(r)
= (42)

(r!/2− 1) log2(c(r)) + b(r)

c(r)
= (43)

(r!/2− 1) log2(r!/2− 1) + b(r)

r!/2− 1
= (44)

log2(r!/2− 1) +
b(r)

r!/2− 1
= (45)

and limr→∞ b(r)/c(r) = 1 (I need help proving this):

log2(r!/2− 1) +
b(r)

r!/2− 1
∼ log2(r!/2− 1) + 1 (46)

log2(r!/2− 1) + log2(2) = (47)

log2(2(r!/2− 1)) (48)

log2(r!− 2) ∼ log2(r!) (49)

Hence, entropy[r] is the same as:

E(L(S(C(1, G⋆r , ω), ψ))) ∼ log2(r!) (50)

Now, repeat code 1 with:

(G⋆⋆v )v∈N = {(x, f⋆⋆v (x)) : x ∈ A⋆⋆v := {c/d : c ∈ Z, d ∈ N, d ≤ v, 0 ≤ c ≤ v})v∈N}

Code 3. Illustration of step (1)-(6) on (G⋆⋆v )

(∗We’ re using Mathematica∗)

Clear [ ”∗Global ‘∗ ” ]

A[ v ] := A[ v ] =

De l e t eDup l i ca t e s [ Flatten [Table [Range [ 0 , t ] / t , {t , 1 , v } ] ] ]

(∗Below i s s tep 1∗)
S1 [ v ] :=

S1 [ v ] = Sort [ Select [A[ v ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 1 &] ]

S2 [ v ] :=

S2 [ v ] = Sort [ Select [A[ v ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 0 &] ]

(∗Below i s s tep 2∗)
Dist1 [ v ] := Dist1 [ v ] = D i f f e r e n c e s [ S1 [ v ] ]

(∗Below i s s tep 3∗)
Dist2 [ v ] := Dist2 [ v ] = D i f f e r e n c e s [ S2 [ v ] ]

(∗Below i s s tep 4∗)
NonOutl iers [ v ] :=

NonOutl iers [ v ] = Join [ Dist1 [ v ] , Dist2 [ v ] ] (∗There are no ou t l i e r s ∗)
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(∗Below i s s tep 5∗)
P[ v ] := P[ v ] = NonOutl iers [ v ] /Total [ NonOutl iers [ v ] ]

(∗Below i s s tep 6∗)

entropy [ v ] := entropy [ v ] = N[Total [−P[ v ] Log [ 2 , P [ v ] ] ] ]

Using this post [14], we assume an approximation of Table[entropy[v],{v,3,Infinity}] or
E(L(S(C(1, G⋆⋆v , ω

′), ψ′))) is:

E(L(S(C(1, G⋆⋆v , ω
′), ψ′))) ∼ 2 log2(v) + 1− log2(3π) (51)

Hence, using §5.3.2 (a) and §5.3.2 (1), take |S(C(ε,G⋆⋆v , ω
′), ψ′)| =

∑v
M=1 ϕ(M) ≈ 3

π2 v
2 (where ϕ is Euler’s

Totient function) to compute the following:

|S(C(ε,G⋆r , ω), ψ)| = (52)

inf
{∣∣S(C(ε,G

⋆⋆
v , ω

′
), ψ

′
)
∣∣ : v ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, E(L(S(C(ε,G
⋆⋆
v , ω

′
), ψ

′
))) ≥ E(L(S(C(ε,G

⋆
r , ω), ψ)))

}
=

inf

{
3

π2
v
2
: r ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, 2 log2(v) + 1 − log2(3π) ≥ log2(r!)

}
=

where:

(1) For every r ∈ N, we find a v ∈ N, where 2 log2(v) + 1− log2(3π) ≥ log2(r!), but the absolute value of
(2 log2(v) + 1− log2(3π))− log2(r!) is minimized. In other words, for every r ∈ N, we want v ∈ Nwhere:

2 log2(v) + 1− log2(3π) ≥ log2(r!) (53)

22 log2(v) ≥ log2(r!)− 1 + log2(3π) (54)(
2log2(v)

)2
≥ 2log2(r!)−1+log2(3π) (55)

v2 ≥
(
2log2(r!)2log2(3π)

)
/2 (56)

v ≥
√
r!(3π)

2
(57)

v =

⌈√
3πr!

2

⌉
(58)

3

π2
v2 =

3

π2

(⌈√
3πr!

2

⌉)2

∼ |S(C(1, G⋆r , ω), ψ)| (59)

Finally, since |S(C(1, G⋆r , ω), ψ)| = r!, we wish to prove

1 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) < +∞

within §5.3.2 crit. 1:

lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) = lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

|S(C(1, G⋆r , ω), ψ)|
|S(C(1, G⋆r , ω), ψ))|

(60)

= lim
r→∞

3
π2

(⌈√
3πr!
2

⌉)2

r!
(61)

where using mathematica, we get the limit is greater than one:

Code 4. Limit of eq. 61
N[ Limit [ ( ( 3 /Piˆ2) (Ceiling [ Sqrt [ ( 3 Pi r ! ) / 2 ] ] ) ˆ 2 ) / ( r ! ) , r −> Inf inity ] ]

(∗The output i s 1.43239 ∗)
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Also, using §5.3.2 (b) and §5.3.2 (1), take |S(C(ε,G⋆⋆v , ω
′), ψ′)| =

∑v
M=1 ϕ(M) ≈ 3

π2 v
2 (whereϕ is Euler’sTotient

function) computing the following:∣∣S(C(ε,G
⋆
r , ω), ψ)

∣∣ = (62)

sup
{∣∣S(C(ε,G

⋆⋆
v , ω

′
), ψ

′
)
∣∣ : v ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, E(L(S(C(ε,G
⋆⋆
v , ω

′
), ψ

′
))) ≤ E(L(S(C(ε,G

⋆
r , ω), ψ)))

}
=

sup

{
3

π2
v
2
: v ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, 2 log2(v) + 1 − log2(3π) ≤ log2(r!)

}
=

where:

(1) For every r ∈ N, we find a v ∈ N, where 2 log2(r) + 1− log2(3π) ≤ log2(r!), but the absolute value
of log2(r!) − (2 log2(v) + 1− log2(3π)) is minimized. In other words, for every r ∈ N, we want v ∈ N
where:

2 log2(v) + 1− log2(3π) ≤ log2(r!) (63)

2 log2(v) ≤ log2(r!)− 1 + log2(3π) (64)(
2log2(v)

)2
≤ 2log2(r!)−1+log2(3π) (65)

(v)2 ≤
(
2log2(r!)2log2(3π)

)
/2 (66)

v ≤
√
r!(3π)

2
(67)

v =

⌊√
3πr!

2

⌋
(68)

3

π2
v2 =

3

π2

(⌊√
3πr!

2

⌋)2

∼ |S(C(1, G⋆r , ω), ψ)| (69)

Finally, since |S(C(1, G⋆r , ω), ψ)| = r!, we wish to prove

1 < lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) < +∞

within §5.3.2 crit. 1:

lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) = lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

|S(C(1, G⋆r , ω), ψ)|
|S(C(1, G⋆r , ω), ψ))|

(70)

= lim
r→∞

3
π2

(⌊√
3πr!
2

⌋)2

r!
(71)

where using mathematica, we get the limit is greater than one:

Code 5. Limit of eq. 71
Clear [ ”∗Global ‘∗ ” ]

N[ Limit [ ( ( 3 /Piˆ2) (Floor [ Sqrt [ ( 3 Pi r ! ) / 2 ] ] ) ˆ 2 ) / ( r ! ) , r −> Inf inity ] ]

(∗Output i s 1.43239 ∗)

Hence, since the limits in eq. 61 and eq. 71 are greater than one and less than +∞: i.e.,

1 < lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) = lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) < +∞ (72)

what we’re measuring from (G⋆r)r∈N increases at a rate superlinear to that of (G⋆⋆v )v∈N (i.e., 5.3.2 crit. 1).

5.3.4. Example of The “Measure” from (G⋆r)r∈N Increasing at a Rate Sub-Linear to that of (G⋆⋆v )v∈N. Using
our previous example, we can use the following theorem:

Theorem 8. If what we’re measuring from (G⋆r)r∈N increases at a rate superlinear to that of (G⋆⋆v )v∈N, then
what we’re measuring from (G⋆⋆v )v∈N increases at a rate sublinear to that of (G⋆r)r∈N
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Hence, in our definition of super-linear (§5.3.2 crit. 1), swap G⋆r for G
⋆⋆
v and v ∈ N for r ∈ N regarding

α (ϵ, r, ω, ψ) and α (ϵ, r, ω, ψ) (i.e., α (ϵ, v, ω, ψ) and α (ϵ, v, ω, ψ)) and notice thm. 8 is true when:

1 < lim sup
ε→0

lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) , lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) < +∞

5.3.5. Example of The “Measure” from (G⋆r)r∈N Increasing at a Rate Linear to that of (G⋆⋆v )v∈N. Suppose,
we have function f : A→ R, whereA = Q ∩ [0, 1], and:

f(x) =

{
1 x ∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]

0 x ̸∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]
(73)

such that:

(A⋆r)r∈N = ({c/r! : c ∈ Z, 0 ≤ c ≤ r!})r∈N

and

(A⋆⋆v )v∈N = (
{
c/(v!)2 : c ∈ N, 1 ≤ c ≤ (v!)2

}
)v∈N

where for f⋆r : A⋆r → R,
f⋆r (x) = f(x) for all x ∈ A⋆r (74)

and f⋆⋆v : A⋆⋆v → R
f⋆⋆v (x) = f(x) for all x ∈ A⋆⋆v (75)

Hence, when (G⋆r)r∈N is:

(G⋆r)r∈N = ({(x, f⋆r (x)) : x ∈ A⋆r})r∈N (76)

and (G⋆⋆v )v∈N is:

(G⋆⋆v )v∈N = ({(x, f⋆⋆v (x)) : x ∈ A⋆⋆v })v∈N (77)

We already know, using eq. 50:

E(L(S(C(1, G⋆r , ω), ψ))) ∼ log2(r!− 2) ∼ log2(r!) (78)

Also, using §5.3.3 steps 1-6 on (G⋆⋆v )v∈N:

Code 6. Illustration of step (1)-(6) on (G⋆⋆v )v∈N

(∗We’ re using Mathematica∗)

Clear [ ”∗Global ‘∗ ” ]

A[ v ] := A[ v ] = Range [ 0 , 7 ( v ! ) ] / ( 7 (v ! ) )

(∗Below i s s tep 1∗)
S1 [ v ] :=

S1 [ v ] = Sort [ Select [A[ v ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 1 &] ]

S2 [ v ] :=

S2 [ v ] = Sort [ Select [A[ v ] , Boole [ IntegerQ [Denominator [# ] / 2 ] ] == 0 &] ]

(∗Below i s s tep 2∗)
Dist1 [ v ] := Dist1 [ v ] = D i f f e r e n c e s [ S1 [ v ] ]

(∗Below i s s tep 3∗)
Dist2 [ v ] := Dist2 [ v ] = D i f f e r e n c e s [ S2 [ v ] ]

(∗Below i s s tep 4∗)
NonOutl iers [ v ] :=

NonOutl iers [ v ] = Dist1 [ v ] (∗Dist2 [ v ] i s an ou t l i e r ∗)

(∗Below i s s tep 5∗)
P[ v ] := P[ v ] = NonOutl iers [ v ] /Total [ NonOutl iers [ v ] ]

(∗Below i s s tep 6∗)

entropy [ v ] := entropy [ v ] = N[Total [−P[ v ] Log [ 2 , P [ v ] ] ] ]

T = Table [{ v , entropy [ v ]} ,{ v , 3 , 6} ]

where the output is
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Code 7. Output of Code 6
{{3 ,(8 Log [ 1 7 ] ) / ( 1 7 Log [ 2 ] ) + (9 Log [ 3 4 ] ) / ( 1 7 Log [ 2 ] ) } ,

{4 ,(8 Log [ 2 8 7 ] ) / ( 2 87 Log [ 2 ] ) + (279 Log [ 5 7 4 ] ) / ( 2 87 Log [ 2 ] ) } ,

{5 ,(224 Log [ 7 199 ] ) / ( 7199 Log [ 2 ] ) + (6975 Log [ 1 4398 ] ) / (7199 Log [ 2 ] ) } ,

{6 ,(2024 Log [ 259199 ] )/ (259199 Log [ 2 ] ) + (257175 Log [ 518398 ] )/ (259199 Log [ 2 ] ) } }

Notice when:

(1) c(v) = (v!)2/2− 1
(2) {b(4) 7→ 9, b(5) 7→ 279, b(6) 7→ 6975, b(7) 7→ 257175, b(8) 7→ 19845}
(3) a(v) + b(v) = c(v)

the output of code 7 can be defined:

a(v) log2(c(v))

c(v)
+
b(v) log(2c(v))

c(v)
=
a(v) log2(c(v)) + b(v) log(2c(v))

c(v)
(79)

Hence, since a(v) = c(v)− b(v) = (v!)2/2− 1− b(v):

a(v) log2(c(v)) + b(v) log(2c(v))

c(v)
= (80)

((v!)2/2− 1− b(v)) log2(c(v)) + b(v) log2(2c(v))

c(v)
= (81)

((v!)2/2) log2(c(v))− log2(c(v))− b(v) log2(v) + b(v) log2(c(v)) + b(v) log2(2)

c(v)
= (82)

((v!)2/2) log2(c(v))− log2(c(v)) + b(v)

c(v)
= (83)

((v!)2/2− 1) log2(c(v)) + b(v)

c(v)
= (84)

((v!)2/2− 1) log2((v!)
2/2− 1) + b(v)

(v!)2/2− 1
= (85)

log2((v!)
2/2− 1) +

b(v)

(v!)2/2− 1
= (86)

since limv→∞ b(v)/c(v) = 1 (this is proven in [15]):

log2((v!)
2/2− 1) +

b(v)

(v!)2/2− 1
∼ log2((v!)

2/2− 1) + 1 (87)

log2((v!)
2/2− 1) + log2(2) = (88)

log2((v!)
2 − 2)) ∼ (89)

log2((v!)
2) = (90)

2 log2(v!) (91)

Hence, entropy[r] is the same as:

E(L(S(C(1, G⋆⋆v , ω), ψ))) ∼ (92)

2 log2(v!) (93)

Therefore, using §5.3.2 (b) and §5.3.2 (3a), take |S(C(ε,G⋆⋆v , ω
′), ψ′)| = (v!)2 to compute the following:∣∣S(C(ε,G

⋆
r , ω), ψ)

∣∣ = (94)

sup
{∣∣S(C(ε,G

⋆⋆
v , ω

′
), ψ

′
)
∣∣ : v ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, E(L(S(C(ε,G
⋆⋆
v , ω

′
), ψ

′
))) ≤ E(L(S(C(ε,G

⋆
r , ω), ψ)))

}
=

sup
{
(v!)

2
: r ∈ N, ω′ ∈ Ωε,v, ψ

′ ∈ Ψε,v,ω, 2 log2(v!) ≤ log2(r!)
}

=

where:
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(1) Foreveryr ∈ N,wefindav ∈ N,where2 log2(v!) ≤ log2(r!), but theabsolutevalueof log2(r!)−2 log2(v!)

is minimized. In other words, for every r ∈ N, we want v ∈ Nwhere:

2 log2(v!) ≤ log2(r!) (95)

22 log2(v!) ≤ 2log2(r!) (96)

(2log2(v!))2 ≤ r! (97)

(v!)2 ≤ r! (98)

(v!)2 = ⌊r!⌋ (99)

To solve for v, we try the following code:

Code 8. Code for v in eq. 99

(∗We’ re using Mathematica∗)

Clear [ ”Global ‘∗ ” ]

T1 = Table [

{ s o l [ r ] := s o l [ r ] = Reduce [ v > 0 && (( v ! ) ˆ 2 ) <= r ! , v , Integers ] ,

v so lve = Max[ v / . Solve [ s o l [ r ] , {v} , Integers ] ] ,

(∗ Largest v tha t so l v e s i n e qua l i t y ( v!)ˆ2<=r for every r ∗)
, N[ ( v so lve ! ) ˆ 2 / ( r ! ) ] } , {r , 3 , 4 0} ] ;

Tablevso lve =

Table [{T1 [ [ r − 3 + 1 , 2 ] ] , r } , {r , 3 ,

40} ] (∗Takes l a r g e s t v−va lues for every r in r ! ∗)

l owera lphr =

Table [{ r , T1 [ [ r − 3 + 1 , 4 ] ] } , {r , 3 ,

40} ] (∗ Takes l a r g e s t l a r g e s t v−va lues and corresponding r value ∗)

ListPlot [ l owera lphr ] (∗Graph points of lowera lphr . Notice , the graph has

a lower bound of zero . ∗)

Note, the output is:

Code 9. Output for code 8
Clear [ ”Global ‘∗ ” ]

(∗ Output of Tab levso lve ∗)
{{2 , 3} , {2 , 4} , {3 , 5} , {4 , 6} , {4 , 7} , {5 , 8} , {5 , 9} , {6 , 10} , {7 , 11} , {7 , 12} ,

{8 , 13} , {8 , 14} , {9 , 15} , {10 , 16} , {10 , 17} , {11 , 18} , {11 , 19} , {12 , 20} , {13 , 21} ,

{13 , 22} , {14 , 23} , {14 , 24} , {15 , 25} , {15 , 26} , {16 , 27} , {17 , 28} , {17 , 29} ,

{18 , 30} , {18 , 31} , {19 , 32} , {20 , 33} , {20 , 34} , {21 , 35} , {21 , 36} , {22 , 37} , {22 , 38} ,

{23 , 39} , {24 , 40}}

(∗Output of lowera lphr ∗)
{{3 , 0 .666667} , {4 , 0 .166667} , {5 , 0 . 3} , {6 , 0 . 8} , {7 , 0 .114286} , {8 , 0 .357143} , {9 , 0 .0396825} ,

{10 , 0 .142857} , {11 , 0 .636364} , {12 , 0 .0530303} , {13 , 0 .261072} , {14 , 0 .018648} , {15 , 0 .100699} ,

{16 , 0 .629371} , {17 , 0 .0370218} , {18 , 0 .248869} , {19 , 0 .0130984} , {20 , 0 .0943082} , {21 , 0 .758956} ,

{22 , 0 .034498} , {23 , 0 .293983} , {24 , 0 .0122493} , {25 , 0 .110244} , {26 , 0 .00424014} , {27 ,0 .0402028} ,

{28 , 0 .41495} , {29 , 0 .0143086} , {30 , 0 .154533} , {31 , 0 .00498494} , {32 , 0 .0562364} , {33 , 0 .681653} ,

{34 , 0 .0200486} , {35 , 0 .252613} , {36 , 0 .00701702} , {37 , 0 .0917902} , {38 , 0 .00241553} ,

{39 , 0 .0327645} , {40 , 0.471809}}
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Figure 1. Plot of loweralphr

Finally, since the lower bound of loweralphr is zero, we have shown:

lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) = 0 (100)

Next, using §5.3.2 (b) and §5.3.2 (3b), take |S(C(ε,G⋆r , ω
′), ψ′)| = r! and swap r ∈ N and (G⋆r)r∈N with v ∈ N

and (G⋆⋆v )v∈N, to compute the following:∣∣S(C(ε,G
⋆⋆
v , ω), ψ)

∣∣ = (101)

inf
{∣∣S(C(ε,G

⋆
r , ω

′
), ψ

′
)
∣∣ : r ∈ N, ω′ ∈ Ωε,r, ψ

′ ∈ Ψε,r,ω, E(L(S(C(ε,G
⋆
r , ω

′
), ψ

′
))) ≥ E(L(S(C(ε,G

⋆⋆
v , ω), ψ)))

}
=

inf
{
r! : r ∈ N, ω′ ∈ Ωε,r, ψ

′ ∈ Ψε,r,ω, log2(r!) ≥ 2 log2(v!)
}

=

where:

(1) Foreveryv ∈ N,wefindar ∈ N,where log2(r!) ≤ 2 log2(v!), but theabsolutevalueof2 log2(v!)−log2(r!)

is minimized. In other words, for every v ∈ N, we want r ∈ Nwhere:

log2(r!) ≤ 2 log2(v!) (102)

2log2(r!) ≤ 22 log2(v!) (103)

r! ≤ (2log2(v!))2 (104)

r! ≤ (v!)2 (105)

r! = (v!)2 (106)

To solve r, we try the following code:

Code 10. Code for r in eq. 106

(∗We’ re using Mathematica∗)

Clear [ ”Global ‘∗ ” ]

T2 = Table [

{ s o l [ v ] := s o l [ v ] = Reduce [ v > 0 && r ! <= (v ! ) ˆ 2 , r , Integers ] ,

r s o l v e = Max[ r / . Solve [ s o l [ v ] , { r } , Integers ] ] ,

(∗ Largest r tha t so l v e s i n e qua l i t y ( r !)<=(v !)ˆ2 for every v ∗)
, N[ ( r s o l v e ! ) / ( ( v ! ) ˆ 2 ) ] } , {v , 3 , 4 0} ] ;

Tab l e r so lve =

Table [{T2 [ [ v − 3 + 1 , 2 ] ] , v} , {v , 3 ,

40} ] (∗Takes l a r g e s t r−va lues for every v in ( v !)ˆ2 ∗)

loweralphv =

Table [{ v , T2 [ [ v − 3 + 1 , 4 ] ] } , {v , 3 ,

40} ] (∗ Takes l a r g e s t l a r g e s t r va lues and corresponding v value ∗)

ListPlot [ loweralphv ] (∗Graph points of loweralphv . Notice , the graph

has a lower bound of zero ∗)

Note, the output is:
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Code 11. Output for code 10
Clear [ ”Global ‘∗ ” ]

(∗ Output of Tab lerso lve ∗)
{{4 , 3} , {5 , 4} , {7 , 5} , {9 , 6} , {10 , 7} , {12 , 8} , {14 , 9} , {15 , 10} , {17 , 11} , {19 , 12} ,

{20 , 13} , {22 , 14} , {24 , 15} , {26 , 16} , {27 , 17} , {29 , 18} , {31 , 19} , {32 , 20} , {34 , 21} ,

{36 , 22} , {38 , 23} , {39 , 24} , {41 , 25} , {43 , 26} , {44 , 27} , {46 , 28} , {48 , 29} , {50 , 30} ,

{51 , 31} , {53 , 32} , {55 , 33} , {57 , 34} , {58 , 35} , {60 , 36} , {62 , 37} , {64 , 38} , {65 , 39} ,

{67 , 40}}

(∗Output of loweralphv ∗)
{{3 , 0 .666667} , {4 , 0 .166667} , {5 , 0 . 3} , {6 , 0 . 8} , {7 , 0 .114286} , {8 , 0 .357143} , {9 , 0 .0396825} ,

{10 , 0 .142857} , {11 , 0 .636364} , {12 , 0 .0530303} , {13 , 0 .261072} , {14 , 0 .018648} , {15 , 0 .100699} ,

{16 , 0 .629371} , {17 , 0 .0370218} , {18 , 0 .248869} , {19 , 0 .0130984} , {20 , 0 .0943082} , {21 , 0 .758956} ,

{22 , 0 .034498} , {23 , 0 .293983} , {24 , 0 .0122493} , {25 , 0 .110244} , {26 , 0 .00424014} , {27 ,0 .0402028} ,

{28 , 0 .41495} , {29 , 0 .0143086} , {30 , 0 .154533} , {31 , 0 .00498494} , {32 , 0 .0562364} , {33 , 0 .681653} ,

{34 , 0 .0200486} , {35 , 0 .252613} , {36 , 0 .00701702} , {37 , 0 .0917902} , {38 , 0 .00241553} ,

{39 , 0 .0327645} , {40 , 0.471809}}

Figure 2. Plot of loweralphv

since the lower bound of loweralphv is zero, we have shown:

lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) = 0 (107)

Hence, using eq. 100 and 107, since both:

(1) lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) or lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) are equal to zero, one

or +∞
(2) lim sup

ε→0
lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) or lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) are equal to zero, one

or +∞
then what I’m measuring from (G⋆r)r∈N increases at a rate linear to that of (G⋆⋆v )v∈N.

5.4. Defining The Actual Rate of Expansion of a Sequence of Bounded Sets.

5.4.1. Definition of Actual Rate of Expansion of a Sequence of Bounded Sets. Suppose:

(1) (G⋆r)r∈N is a sequence of the graph of each f⋆r (§3.1C)
(2) C is a reference point inRn+1

(3) Q,R ∈ Rn+1

(4) Q = (q1, · · ·, qn+1) andR = (r1, · · ·, rn+1), where:

Q−R = (q1 − r1, · · ·, qn+1 − rn+1)

(5) ||Q||n+1 =
√
q21 + · · ·+ q2n+1 and ||R||n+1 =

√
r21 + · · ·+ r2n+1

(6) C −G⋆r = {C − y : y ∈ G⋆r}
(7) dimH(·) be the Hausdorff dimension
(8) HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra
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For any r ∈ N, take the (n+ 1)-dimensional Euclidean distance between a reference point C ∈ Rn+1 and each
point inG⋆r :

G(C,G⋆r) = {||C − y|| : y ∈ G⋆r}

then average G(C,G⋆r):

Avg(G(C,G⋆r)) =
1

HdimH(C−G⋆r)(C −G⋆r)

∫
C−G⋆r

||(x1, · · ·, xn+1)||n+1 dHdimH(C−G⋆r)

where the actual rate of expansion of (G⋆r)r∈N is:

E(C,G⋆r) = Avg(G(C,G⋆r+1))−Avg(G(C,G⋆r))

If E(C,G⋆r) is undefined, replace the Hausdorff measureHdimH(C−G⋆r) with the generalized Hausdorff measure

H ϕµh,g(q,t) [1, p.26-33]

5.4.2. Example. Suppose, we have f : A→ R, whereA = R and f(x) = x, such that (A⋆r)r∈N = ([−r, r])r∈N and
for f⋆r : A⋆r → R:

f⋆r (x) = f(x) for all x ∈ A⋆r

Hence, when (G⋆r)r∈N is:

(G⋆r)r∈N = ({(x, x) : x ∈ [−r, r]})r∈N

such that C = (0, 0), note:

Avg(G(C,G⋆r)) =
1

HdimH(C−G⋆r)(C −G⋆r)

∫
C−G⋆r

||(x1, x2)||2 dHdimH(C−G⋆r) = (108)

1

H1((0, 0)−G⋆r)

∫ r

−r
||(x1, x1)||2 dH1 = (since x2 = f(x1) = x1) (109)

1

length(G⋆r)

∫ r

−r

√
x21 + x21 dx1 = (110)

1√
(r − (−r))2 − (r − (−r))2

∫ r

−r

√
2x21 dx1 = (111)

1√
(2r)2 + (2r)2

∫ r

−r

√
2x21 dx1 = (112)

1

2
√
2r

∫ r

−r

√
2|x1| dx1 = (113)

1

2
√
2r

(√
2

2
sign(x1)(x1)

2

∣∣∣∣∣
r

−r

)
= (114)

1

2
√
2r

(√
2

2
sign(r)r2 −

√
2

2
sign(−r)(−r)2

)
= (115)

1

2
√
2r

(√
2

2
r2 +

√
2

2
r2

)
= (116)

1

2
√
2r

(√
2r2
)
= (117)

1

2
r (118)

(119)
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and the actual rate of expansion is:

E(C,G⋆r) =Avg(G(C,G⋆r+1))−Avg(G(C,G⋆r)) = (120)

(r + 1)/2− r/2 = (121)

(1/2)r + 1/2− (1/2)r = (122)

1/2 (123)

5.5. Reminder. See if §3.1 is easier to understand.

6. My Attempt At Answering The Approach of §2.5.1

6.1. Choice Function. Suppose we define the following:

(1) If for all r ∈ N, B ⊂ B(Rn) (§2.3.3) is an arbitrary set, whereA⋆r ∈ B and B ⊂ B(A⋆r) (§2.3.3) is an
arbitrary set, then f⋆r ∈ B satisfies (1), (2), (3), (4) and (5) of the leading question in §3.1

(2) For all v ∈ N,A⋆⋆v ∈ B(Rn) \ B and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B)

Further note, from §5.3.2 (a), if we take:
|S(C(ε,G⋆r , ω), ψ)| = (124)

inf
{∣∣S(C(ε,G⋆⋆v , ω

′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆v , ω
′), ψ′))) ≥ E(L(S(C(ε,G⋆r , ω), ψ)))

}
and from §5.3.2 (b), we take:

|S(C(ε,G⋆r , ω), ψ)| = (125)

sup
{∣∣S(C(ε,G⋆⋆v , ω

′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆v , ω
′), ψ′))) ≤ E(L(S(C(ε,G⋆r , ω), ψ)))

}
Then, §5.3.1 (2), eq. 124, and eq. 125 is:

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

|S(C(ε,G⋆r , ω), ψ)| = |S ′(ε,G⋆r)| = |S ′| (126)

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

|S(C(ε,G⋆r , ω), ψ)| = |S ′(ε,G⋆r)| = |S ′| (127)

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

|S(C(ε,G⋆r , ω), ψ)| = |S ′(ε,G⋆r)| = |S ′| (128)

6.2. Approach. Wemanipulate the definitions of §5.3.2 (a) and §5.3.2 (b) to solve (1), (2), (3), (4) and (5) of
the leading question in §3.1

6.3. Potential Answer.

6.3.1. Preliminaries (Definition of T ). Suppose (G⋆r)r∈N is the sequence of the graph on each function f⋆r (§2.3.1).
Then, when:

• The average ofG⋆r for every r ∈ N is:

Avg(G⋆r) =
1

HdimH(G⋆r)(G⋆r)

∫
G⋆r

(x1, · · ·, xn+1) dHdimH(G⋆r) (129)

• d(P,Q) is the (n+ 1)-dimensional Euclidean distance between points P,Q ∈ Rn+1

• The difference of pointX = (x1, · · ·, xn+1) and Y = (y1, · · ·, yn+1) is:

X − Y = (x1 − y1, x2 − y2, · · ·, xn+1 − yn+1)

We define an explicit injective F : Rn → R, where r, v ∈ N, such that:

(1) If d(Avg(G⋆r), C) < d(Avg(G⋆⋆v ), C), then F (Avg(G⋆r)− C) < F (Avg(G⋆⋆v )− C)
(2) If d(Avg(G⋆r), C) > d(Avg(G⋆⋆v ), C), then F (Avg(G⋆r)− C) > F (Avg(G⋆⋆v )− C)
(3) If d(Avg(G⋆r), C) = d(Avg(G⋆⋆v ), C), then F (Avg(G⋆r)− C) ̸= F (Avg(G⋆⋆v )− C)

where we define:

T (C,G⋆r) = F (Avg(G⋆r)− C) (130)
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6.3.2. Question. Does T exist? If so, how do we define it?
Hence, using |S ′|, |S ′|, |S ′|, E, E(C,G⋆r) (§5.4), and T (C,G⋆r), such that with the absolute value function || · ||,
ceiling function ⌈·⌉, and nearest integer function [·], we define:

K(ε,G
⋆
r) =

(
1 +

∣∣∣∣E − E(C,G
⋆
r)
∣∣∣∣)

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣S′∣∣
1 +


∣∣∣S′

∣∣∣(∣∣∣S′
∣∣∣+2

∣∣∣S′
∣∣∣)(

|S′|+|S′|
)(

|S′|+|S′|+|S′|
)

(1 +

[∣∣S′∣∣/ ∣∣S′∣∣])
(
1 +

[
|S′| /|S′|

]) (
1 +

[
|S′|/|S′|

]) −
∣∣∣S′
∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
+
∣∣∣S′
∣∣∣
− T (C,G

⋆
r)E(C,G

⋆
r) (131)

where E ,E, and T are “removed” when E , E = 0, the choice function which answers the leading question in
§3.1 could be the following, s.t. we explain the reason behind choosing the choice function in §6.4:

Theorem 9. If we define:

M(ε,G⋆r) = |S ′(ε,G⋆r)|
(
K(ε,G⋆r)− |S ′(ε,G⋆r)|

)
M(ε,G⋆⋆v ) = |S ′(ε,G⋆⋆v )|

(
K(ε,G⋆⋆v )− |S ′(ε,G⋆⋆v )|

)
where for M(ε,G⋆r), we define M(ε,G⋆r) to be the same as M(ε,G⋆⋆v ) when swapping “v ∈ N” with “r ∈ N”
(for eq. 124 & 125) and sets G⋆r with G⋆⋆v (for eq. 124–131), then for constant v > 0 and variable v∗ > 0, if:

S(ε, r, v∗, G⋆⋆v ) = inf ({|S ′(ε,G⋆⋆v )| : v ∈ N,M(ε,G⋆⋆v ) ≥ M(ε,G⋆r) ≥ v∗} ∪ {v∗}) + v (132)

and:

S(ε, r, v∗, G⋆⋆v ) = sup ({|S ′(ε,G⋆⋆v )| : v ∈ N, v∗ ≤ M(ε,G⋆⋆v ) ≤ M(ε,G⋆r)} ∪ {−v∗}) + v (133)

where for all r, v ∈ N, there exists a A⋆r ∈ B and f⋆r ∈ B (§6.1 crit. 1), such that for all A⋆⋆v ∈ B(Rn) \ B
and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B) (§6.1 crit. 2), whenever:

inf

{
||1− c|| : ∀(ϵ > 0)∃(c > 0)∀(r ∈ N)∃(v ∈ N)

(∣∣∣∣∣∣∣∣ |S ′(ε,G⋆r)|
|S ′(ε,G⋆⋆v )|

− c

∣∣∣∣∣∣∣∣ < ε

)}
(134)

such that ⌈·⌉ is the ceiling function, E is the fixed rate of expansion, Γ is the gamma function, n is the
dimension of Rn, dimH(G

⋆
r) is the Hausdorff dimension of set G⋆r ⊆ Rn+1, and Ar is area of the smallest

(n+ 1)-dimensional box that contains A⋆r, then:

V (ε,G⋆r,n) = (135)⌈(
Ar

1−sign(E)(E − sign(E) + 1)

(
exp (n ln(π)/2)

Γ(n/2 + 1)

)(
r!(n−dimH(G⋆r))

)(
rsign(E)(dimH(G⋆r)−sign(dimH(G⋆r))+1)

)
+

(1− sign(dimH(G
⋆
r)))

)
/ε

⌉/
|S ′(ε,G⋆r)|

& the choice function is:

lim sup
ε→0

lim
v∗→∞

lim sup
r→∞

(
sign(M(ε,G⋆r))S(ε, r, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
− c−V (ε,G⋆r,n)

)
(136)(

sign(M(ε,G⋆r))S(ε, r, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
− c−V (ε,G⋆r,n)

)
=

lim inf
ε→0

lim
v∗→∞

lim inf
r→∞

(
sign(M(ε,G⋆r))S(ε, k, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
− c−V (ε,G⋆r,n)

)
(137)(

sign(M(ε,G⋆r))S(ε, r, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
− c−V (ε,G⋆r,n)

)
= 0

where (G⋆r)r∈N satisfies eq. 136 & eq. 137. (Note, we want sup ∅ = −∞ and inf ∅ = +∞) such that the
expected value which answers the approach of §2.5.1, using the leading question (§3.1), is E[f⋆r ]



DEFINING A SATISFYING EXPECTED VALUE FOR ALL PATHOLOGICAL FUNCTIONS 23

6.4. Explaining The Choice Function and Evidence The Choice Function Is Credible. Notice,
before reading the programming in code 12, without the “c”-terms in eq. 136 and eq. 137:

(1) The choice function in eq. 136 and eq. 137 is zero, when what I’m measuring from (G⋆r)r∈N (§5.3.2 criteria
1) increases at a rate superlinear to that of (G⋆⋆v )v∈N, where sign(M(ε,G⋆r)) = 0.

(2) The choice function in eq. 136 and eq. 137 is zero, when for a given (G⋆r)r∈N and (G⋆⋆v )v∈N there doesn’t
exist cwhere eq. 134 is satisfied or c = 0.

(3) When c does exist, suppose: {
J (r) : r ∈ N,

|S ′(ε,G⋆r)|
|S ′(ε,G⋆⋆J (r))|

≈ c

}
(138)

(a) When |S ′(ε,G⋆r)| < |S ′(ε,G⋆⋆J (r))|, then:

lim sup
ε→0

lim
v∗→∞

lim sup
r→∞

sign(M(ε,G⋆r))S(ε, r, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
= c (139)

lim inf
ε→0

lim
v∗→∞

lim inf
r→∞

sign(M(ε,G⋆r))S(ε, r, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
= 0 (140)

(b) When |S ′(ε,G⋆r)| > |S ′(ε,G⋆⋆J (r))|, then:

lim sup
ε→0

lim
v∗→∞

lim sup
r→∞

sign(M(ε,G⋆r))S(ε, k, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
= +∞ (141)

lim inf
ε→0

lim
v∗→∞

lim inf
r→∞

sign(M(ε,G⋆r))S(ε, k, v∗, G⋆⋆v )

|S ′(ε,G⋆r)|+ v
= 1/c (142)

Hence, for each sub-criteria under crit. (3), if we subtract one of their limits by their limit value, then eq.
136 and eq. 137 is zero. (We do this using the “c”-term in eq. 136 and 137). However, when the exponents of
the “c”-terms aren’t equal to−1, the limits of eq. 136 and 137 aren’t equal to zero. We want this, infact,
whenever we swap S ′(ε,G⋆r) with S ′(ε,G⋆⋆v ). Moreover, we define function V (ε,G⋆r, n) (i.e., eq. 135), where:

(i) When S′(ε,G⋆r) ≫ Numerator (V (ε,G⋆r, n)), then eq. 136 and 137 without the “c”-terms are zero.
(The “c”-terms approach zero and still allow eq. 136 and 137 to equal zero.)

(ii) When S′(ε,G⋆r) ≪ Numerator (V (ε,G⋆r, n)), then sign(M(ε,G⋆r)) is zero which makes eq. 136 and
137 equal zero.

(iii) Here are some examples of the numerator of V (ε,G⋆r, n) (eq. 135):
(A) WhenE = 0, n = 1, and dimH(A) = 0, the numerator of V (ε,G⋆r, n) is ⌈(Ar! + 1) /ε⌉
(B) WhenE = z, n = 1, and dimH(A) = 0, the numerator of V (ε,G⋆r, n) is ⌈(2zr · r! + 1) /ε⌉
(C) WhenE = 0, n = z2, and dimH(A) = z2, the numerator of V (ε,G⋆r, n) is ceiling of constantA

times the volume of an n-dimensional ball with finite radius: i.e.,⌈
Az1 exp (z2 ln(π)/2)

Γ(z2/2 + 1)

/
ε

⌉
(D) WhenE = z1, n = z2, and dimH(A) = z2, the numerator of V (ε,G⋆r, n) is ceiling of the volume of

the n-dimensional ball: i.e.,⌈
z1 exp (z2 ln(π)/2)

Γ(z2/2 + 1)
rz2
/
ε

⌉
Now, consider the code for eq. 136 and eq. 137. (Note, the set theoretic limit of G⋆r is the graph of function
f : A→ R.) In this example,A = Q ∩ [0, 1], and:

f(x) =

{
1 x ∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]

0 x ̸∈ {(2s+ 1)/(2t) : s ∈ Z, t ∈ N, t ̸= 0} ∩ [0, 1]
(143)

such that:
(A⋆r)r∈N = ({c/(r!) : c ∈ Z, 0 ≤ c ≤ r!})r∈N

the ceiling function is ⌈·⌉, and:
(A⋆⋆v )v∈N = ({c/⌈v!/3⌉ : c ∈ Z, 0 ≤ c ≤ ⌈v!/3⌉})v∈N
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such for f⋆r : A⋆r → R,
f⋆r (x) = f(x) for all x ∈ A⋆r (144)

and f⋆⋆v : A⋆⋆v → R
f⋆⋆v (x) = f(x) for all x ∈ A⋆⋆v (145)

Hence, when (G⋆r)r∈N is:

(G⋆r)r∈N = ({(x, f(x)) : x ∈ {c/k! : c ∈ Z, 0 ≤ c ≤ k!}})r∈N (146)

and (G⋆⋆v )v∈N is:

(G⋆⋆v )v∈N = ({(x, f(x)) : x ∈ {c/⌈v!/3⌉ : c ∈ Z, 0 ≤ c ≤ ⌈v!/3⌉}})v∈N (147)

Note, the following (we leave this to mathematicians to figure LengthS1, LengthS2, Entropy1 and Entropy2 for
otherA and f in code 12).

Code 12. Code for eq. 136 and 137 to eq. 146 and eq. 147
Clear [ ”Global ‘∗ ” ]

(∗ ‘A’ i s the domain of f ∗)
A=In t e r s e c t [ Rationals , I n t eva l [ { 0 , 1 } ] ]

(∗ ‘ f ’ i s the funct ion we are averaging over . In the case of f in §5.3.3 , t h i s can be

reperesented in mathematica using the f o l l ow ing ∗)
f [ x ] := f [ x ] =

Piecewise [{{1 , Boole [ IntegerQ [Denominator [ x ] / 2 ] ] == 1} , {0 ,

Boole [ IntegerQ [ (Denominator [ x ] − 1 ) / 2 ] ] == 1}} ]

eps=1 (∗ Since ’A’ i s ra t iona l , we se t ’ eps ’ or ε to 1∗)

(∗ ‘ LengthS1 ’ i s |S′(ε,G⋆r)|∗)
LengthS1 [ r ] := LengthS1 [ r ] = Ceiling [ r ! / 3 ] + 1

(∗ ‘ Entropy1 ’ i s the approximation of sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

E(L(S(C(ε,G⋆r , ω), ψ))) using asymptotic ana ly s i s ∗)

Entropy1 [ r ] := Entropy1 [ r ] = Log2 [ r ! / 3 ]

(∗ ‘ LengthS2 ’ i s |S′(ε,G⋆⋆v )|∗)
LengthS2 [ v ] := LengthS2 [ v ] = v ! + 1

(∗ ‘ Entropy2 ’ i s the approximation sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

E(L(S(C(ε,G⋆⋆v , ω), ψ))) using asmyptotic ana ly s i s ∗)

Entropy2 [ v ] := Entropy2 [ v ] = Log2 [ v ! ]

q = 35 ; (∗We want q as la rge as po s s i b l e ; however , t h i s i s l imi t ed by

computation time . ∗)

(∗Below i s the process of so l v ing ‘TableLowAlphr ’ which i s |S′(ε,G⋆r)|∗)
LowAlphValuesr = Table [

{ s o l 1 [ r ] :=

so l 1 [ r ] = Reduce [ v > 0 && Entropy2 [ v ] <= Entropy1 [ r ] , v , Integers ] ,

LowSampler = Max[ v / . Solve [ s o l 1 [ r ] , {v} , Integers ] ] ,

LowAlphr = N[ LengthS2 [ LowSampler ] ] } , {r , 3 , q } ] ;

TableLowAlphr = Table [ LowAlphValuesr [ [ r − 3 + 1 , 3 ] ] , {r , 3 , q } ]

(∗Below i s the process of so l v ing ‘TableUpAlphr ’ which i s |S′(ε,G⋆r)|∗)
UpAlphValuesr = Table [

{ s o l 11 [ r ] :=

so l 11 [ r ] =

Reduce [ v < 5000 && Entropy2 [ v ] >= Entropy1 [ r ] , v , Integers ] ,

UpSampler = Min [ v / . Solve [ s o l 11 [ r ] , {v} , Integers ] ] ,

UpAlphr = N[ LengthS2 [ UpSampler ] ] } , {r , 3 , q } ] ;

TableUpAlphr = Table [ UpAlphValuesr [ [ r − 3 + 1 , 3 ] ] , {r , 3 , q } ]

(∗Below i s the process of so l v ing ‘TableLowAlphv ’ which i s |S′(ε,G⋆⋆v )|∗)
LowAlphValuesv = Table [

{ s o l 2 [ v ] :=

so l 2 [ v ] =

Reduce [ r > 0 && Entropy1 [ r ] <= Entropy2 [ v ] , r , Integers ] ,
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LowSamplev = Max[ r / . Solve [ s o l 2 [ v ] , { r } , Integers ] ] ,

LowAlphv = N[ LengthS1 [ LowSamplev ] ] } , {v , 3 , q } ] ;

TableLowAlphv = Table [ LowAlphValuesv [ [ v − 3 + 1 , 3 ] ] , {v , 3 , q } ]

(∗Below i s the process of so l v ing ‘TableUpAlphv ’ which i s |S′(ε,G⋆⋆v )|∗)
UpAlphValuesv = Table [

{ s o l 21 [ v ] :=

so l 21 [ v ] =

Reduce [ r < 5000 && Entropy1 [ r ] >= Entropy2 [ v ] , r , Integers ] ,

UpSamplev = Min [ r / . Solve [ s o l 21 [ v ] , { r } , Integers ] ] ,

UpAlphv = N[ LengthS1 [ UpSamplev ] ] } , {v , 3 , q } ] ;

TableUpAlphv = Table [ UpAlphValuesv [ [ v − 3 + 1 , 3 ] ] , {v , 3 , q } ]

a [ r ] := a [ r ] = TableUpAlphr [ [ r − 3 + 1 ] ] (∗This i s |S′(ε,G⋆r)|∗)
b [ r ] := b [ r ] = LengthS1 [ r ] (∗This i s |S′(ε,G⋆r)|∗)
c [ r ] := c [ r ] = TableLowAlphr [ [ r − 3 + 1 ] ] (∗This i s |S′(ε,G⋆r)|∗)

(∗ ‘K1’ i s K(ε,G⋆r)∗)
K1[ r ] :=

K1 [ r ] = N[

RealAbs [ ( b [

r ] (1 + Ceiling [ ( b [

r ] ( a [ r ] + 2 b [ r ] ) ) / ( ( a [ r ] + b [ r ] ) ( a [ r ] + b [ r ] +

c [ r ] ) ) ] ) (1 + Round [ a [ r ] / b [ r ] ] ) ) / ( ( 1 +

Round [ b [ r ] / c [ r ] ] ) (1 + Round [ a [ r ] / c [ r ] ] ) ) − b [ r ] ] + b [ r ] ]

a1 [ v ] :=

a1 [ v ] = TableUpAlphv [ [ v − 3 + 1 ] ] (∗This i s |S′(ε,G⋆⋆v )|∗)
b1 [ v ] := b1 [ v ] = LengthS2 [ v ] (∗This i s |S′(ε,G⋆⋆v )|∗)
c1 [ v ] := c1 [ v ] = TableLowAlphv [ [ v − 3 + 1 ] ] (∗This i s |S′(ε,G⋆⋆v )|∗)

(∗ ‘K2’ i s K(ε,G⋆⋆v )∗)
K2[ v ] :=

K2 [ v ] = N[

RealAbs [ ( b1 [

v ] (1 + Ceiling [ ( b1 [

v ] ( a1 [ v ] + 2 b1 [ v ] ) ) / ( ( a1 [ v ] + b1 [ v ] ) ( a1 [ v ] +

b1 [ v ] + c1 [ v ] ) ) ] ) (1 + Round [ a1 [ v ] / b1 [ v ] ] ) ) / ( ( 1 +

Round [ b1 [ v ] / c1 [ v ] ] ) (1 + Round [ a1 [ v ] / c1 [ v ] ] ) ) − b1 [ v ] ] +

b1 [ v ] ]

(∗ ‘Mr’ i s M ′(ε,G⋆r)∗)
Mr = Table [N[ LengthS1 [ r ] (K1 [ r ] − LengthS1 [ r ] ) ] , {r , 3 , q − 1} ]

(∗ ‘Mv’ i s M ′(ε,G⋆⋆v )∗)
Mv = Table [N[ LengthS2 [ v ] (K2 [ v ] − LengthS2 [ v ] ) ] , {v , 3 , q − 1} ]

(∗ ‘DownS’ i s S(ε, r, v∗, G⋆⋆v )∗)
DownS = Table [

LengthS2 [ Flatten [

Position [Mv, Max[ Select [Mv, # <= Mr [ [ r − 4 + 2 ] ] & ] ] ] ] [ [ 1 ] ] +

4 − 2 ] , {r , 4 , q − 3} ]

(∗ ‘UpS’ i s S(ε, r, v∗, G⋆⋆v )∗)
UpS = Table [

LengthS2 [ Flatten [

Position [Mv, Min [ Select [Mv, # >= Mr [ [ r − 4 + 2 ] ] & ] ] ] ] [ [ 1 ] ] +

4 − 2 ] , {r , 4 , q − 3} ]

E1 = 0 (∗Constant rate of expansion ∗)
dimH = 0 (∗Hausdorff Dimension of A∗)
Ar = 1 (∗The sma l l e s t 1−dimensional box tha t covers A⋆⋆⋆r i s [ 0 , 1 ] which

has a l eng th / ‘ area ’ of one ∗)

(∗ ‘V’ i s V (ε,G⋆r) or eq . 135 . Note , n i s the dimension

of n−Euclidean Plane for which A i s a subse t ∗)
V[ r ] := V[

r ] = V[ r , n ] :=

V[ r , n ] =
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Ceiling [ ( Arˆ(1 − Sign [ E1 ] ) ) (E1 + (1 − Sign [ E1 ] ) ) ( (Piˆ(n/2))/

Gamma[ n/2 + 1 ] ) ( r ! ˆ ( n −
dimH)) ( r ˆ(Sign [ E1 ] (dimH − Sign [ dimH ] + 1 ) ) ) + (1 −

Sign [ dimH ] )

Simplify [V[ r ] ] / eps ] / LengthS1 [ r ]

(∗ We couldn ’ t add v , v∗ or convert t h i s to a l im i t due to

l im i t a t i on s of the programming ∗)
ChoiceFunction =

Table [N[ ( ( Sign [Mr [ [ r − 5 + 2 ] ] ] UpS [ [ r − 5 + 2 ] ] ) / ( LengthS1 [

r ] ) − ( LengthS1 [ r ] / LengthS2 [ r ])ˆ(−V[ r , 1 ] ) ) ∗ ( ( Sign [Mr [ [ r − 5 + 2 ] ] ] DownS [ [

r − 5 + 2 ] ] ) / ( LengthS1 [ r ] ) − ( LengthS1 [ r ] /

LengthS2 [ r ])ˆ(−V[ r , 1 ] ) ) ] , {r , 5 , q − 3} ]

7. Questions

(1) Does §6 answer the leading question in §3.1
(2) Using thm. 9, when f is defined in §2.1, does E[f⋆r ] have a finite value?
(3) Using thm. 9, when f is defined in §2.2, does E[f⋆r ] have a finite value?
(4) If there’s no time to check questions 1, 2 and 3, see §4.

8. Appendix of §5.3.1

8.1. Example of §5.3.1, step 1. Suppose

(1) A = R
(2) When defining f : A→ R:

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(148)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N

Then one example ofC(
√
2/6, G⋆1, 1), using §5.3.1 step 1, (whereG⋆1 = ({(x, f(x)) : −1 ≤ x ≤ 1})r∈N) is:{{

(x, f(x)) : −1 ≤ x <

√
2 − 6

6

}
,

{
(x, f(x)) :

√
2 − 6

6
≤ x <

2
√
2 − 6

6

}
,

{
(x, f(x)) :

2
√
2 − 6

6
≤ x <

3
√
2 − 6

6

}
{
(x, f(x)) :

3
√
2 − 6

6
≤ x <

4
√
2 − 6

6

}
,

{
(x, f(x)) :

4
√
2 − 6

6
≤ x <

5
√
2 − 6

6

}
,

{
(x, f(x)) :

5
√
2 − 6

6
≤ x <

6
√
2 − 6

6

}
(149)

{
(x, f(x)) :

6
√
2 − 6

6
≤ x <

7
√
2 − 6

6

}
,

{
(x, f(x)) :

7
√
2 − 6

6
≤ x <

8
√
2 − 6

6

}
,

{
(x, f(x)) :

8
√
2 − 6

6
≤ x ≤

9
√
2 − 6

6

}}

Note, the length of each partition is
√
2/6, where the borders could be approximated as:{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (150)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

which is illustrated using alternating orange/black lines of equal length coveringG⋆1 (i.e., the black vertical lines
are the smallest and largest x-cooridinates ofG⋆1).
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Figure 3. The alternating orange& black lines are the “covers” and the vertical lines are the
boundaries ofG⋆1.

(Note, the alternating covers in fig. 3 satisfy step (1) of §5.3.1, because the Hausdorff measure in its dimension

of the covers is
√
2/6 and there are 9 covers over-coveringG⋆1: i.e.,

Definition 1 (Minimum Covers of Measure ε =
√
2/6 covering G⋆1). We can compute the minimum

covers of C(
√
2/6, G⋆1, 1), using the formula:

⌈HdimH(G
⋆
1)(G⋆1)/(

√
2/6)⌉

where ⌈HdimH(G⋆1)(G⋆1)/(
√
2/6)⌉ = ⌈Length([−1, 1])/(

√
2/6)⌉ = ⌈2/(

√
2/6)⌉ = ⌈6

√
2⌉ = ⌈6(1.4)⌉ = ⌈8+ .4⌉ = 9). Note

there are other examples ofC(
√
2/6, G⋆1, ω) for different ω. Here is another case:

Figure 4. This is similar to figure 3, except the start-points of the covers are shifted all the
way to the left.

which can be defined (see eq. 149 for comparison):

{{
(x, f(x)) :

6 − 9
√
2

6
≤ x <

6 − 8
√
2

6

}
,

{
(x, f(x)) :

6 − 8
√
2

6
≤ x <

6 − 7
√
2

6

}
,

{
(x, f(x)) :

6 − 7
√
2

6
≤ x <

6 − 6
√
2

6

}
{
(x, f(x)) :

6 − 6
√
2

6
≤ x <

6 − 5
√
2

6

}
,

{
(x, f(x)) :

6 − 5
√
2

6
≤ x <

6 − 4
√
2

6

}
,

{
(x, f(x)) :

6 − 4
√
2

6
≤ x <

6 − 3
√
2

6

}
(151)

{
(x, f(x)) :

6 − 3
√
2

6
≤ x <

6 − 2
√
2

6

}
,

{
(x, f(x)) :

6 − 2
√
2

6
≤ x <

6 −
√
2

6

}
,

{
(x, f(x)) :

6 −
√
2

6
≤ x ≤ 1

}}
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In the case ofG⋆1, there are uncountable different covers C(
√
2/6, G⋆1, ω) which can be used. For instance, when

0 ≤ α ≤ (12− 9
√
2)/6 (i.e., ω = α+ 1) consider:

{{
(x, f(x)) : α− 1 + α ≤ x < α +

√
2 − 6

6

}
,

{
(x, f(x)) : α +

√
2 − 6

6
≤ x < α +

2
√
2 − 6

6

}
,

{
(x, f(x)) : α +

2
√

2 − 6

6
≤ x < α +

3
√
2 − 6

6

}
{
(x, f(x)) : α +

3
√
2 − 6

6
≤ x < α +

4
√

2 − 6

6

}
,

{
(x, f(x)) : α +

4
√
2 − 6

6
≤ x < α +

5
√
2 − 6

6

}
,

{
(x, f(x)) : α +

5
√
2 − 6

6
≤ x < α +

6
√

2 − 6

6

}
,

{
(x, f(x)) : α +

6
√
2 − 6

6
≤ x < α +

7
√
2 − 6

6

}
(152)

{
(x, f(x)) : α +

7
√

2 − 6

6
≤ x < α +

8
√

2 − 6

6

}
,

{
(x, f(x)) : α +

8
√
2 − 6

6
≤ x ≤ α +

9
√
2 − 6

6

}}

When α = 0 and ω = 1, we get figure 3 and when α = (12− 9
√
2)/6 and ω = (18− 9

√
2)/6, we get figure 4

8.2. Example of §5.3.1, step 2. . Suppose:

(1) A = R
(2) When defining f : A→ R: i.e.,

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(153)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N
(4) G⋆1 = {(x, f(x)) : −1 ≤ x ≤ 1}
(5) C(

√
2/6, G⋆1, 1), using eq. 150 and fig. 3, which is approximately{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (154)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

Then, an example of S(C(
√
2/6, G⋆1, 1), 1) is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (155)

Below, we illustrate the sample: i.e., the set of all blue points in each orange and black line of C(
√
2/6, G⋆1, 1)

coveringG⋆1:

Figure 5. The blue points are the “sample points”, the alternative black and orange lines are
the “covers”, and the red lines are the smallest & largest x-coordinates ofG⋆1.

Note, there are multiple samples that can be taken, as long as one sample point is taken from each cover in
C(

√
2/6, G⋆1, 1).
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8.3. Example of §5.3.1, step 3. Suppose

(1) A = R
(2) When defining f : A→ R:

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(156)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N
(4) G⋆1 = {(x, f(x)) : −1 ≤ x ≤ 1}
(5) C(

√
2/6, G⋆1, 1), using eq. 150 and fig. 3, is approx.{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (157)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

(6) S(C(
√
2/6, G⋆1, 1), 1), using eq. 155, is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (158)

Therefore, consider the following process:

8.3.1. Step 3a. If S(C(
√
2/6, G⋆1, 1), 1) is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (159)

suppose x0 = (−.9, 1). Note, the following:

(1) x1 = (−.65, 1) is the next point in the “pathway” since it’s a point in S(C(
√
2/6, G⋆1, 1), 1) with the

smallest 2-d Euclidean distance to x0 instead of x0.
(2) x2 = (−.4, 1) is the thirdpoint since it’s apoint inS(C(

√
2/6, G⋆1, 1), 1)with the smallest 2-dEuclidean

distance to x1 instead of x0 and x1.
(3) x3 = (−.2, 1) is the fourth point since it’s a point in S(C(

√
2/6, G⋆1, 1), 1) with the smallest 2-d

Euclidean distance to x2 instead of x0, x1, and x2.
(4) we continue this process, where the “pathway” of S(C(

√
2/6, G⋆1, 1), 1) is:

(−.9, 1) → (−.65, 1) → (−.4, 1) → (−.2, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1) (160)

Note 10. If more than one point has the minimum 2-d Euclidean distance from x0, x1, x2, etc. take all
potential pathways: e.g., using the sample in eq. 159, if x0 = (−.65, 1), then since (−.9, 1) and (−.4, 1) have
the smallest Euclidean distance to (−.65, 1), take two pathways:

(−.65, 1) → (−.9, 1) → (−.4, 1) → (−.2, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1)

and also:

(−.65, 1) → (−.4, 1) → (−.2, 1) → (−.9, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1)

8.3.2. Step 3b. Next, take the length of all line segments in each pathway. In other words, suppose d(P,Q) is the
n-th dim.Euclidean distance between points P,Q ∈ Rn. Using the pathway in eq. 160, we want:

{d((−.9, 1), (−.65, 1)), d((−.65, 1), (−.4, 1)), d((−.4, 1), (−.2, 1)), d((−.2, 1), (.55, .5)), (161)

d((.55, .5), (.75, .5)), d((.75, .5), (1, .5)), d((1, .5), (.3,−1)), d((.3,−1), (.1,−1))}

Whose distances can be approximated as:

{.25, .25, .2, .901389, .2, .25, 1.655295, .2}

Also,wesee theoutliers [5] are .901389and1.655295(i.e., notice that theoutliersaremoreprominent forε≪
√
2/6).

Therefore, remove .901389 and 1.655295 from our set of lengths:

{.25, .25, .2, .2, .25, .2}

This is illustrated using:
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Figure 6. The black arrows are the “pathways” whose lengths aren’t outliers. The length of
the red arrows in the pathway are outliers.

Hence, when x0 = (−.9, 1), using §5.3.1 step 3b & eq. 159, we note:

L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1)) = {.25, .25, .2, .2, .25, .2} (162)

8.3.3. Step 3c. To convert the set of distances in eq. 162 into a probability distribution, we take:∑
x∈{.25,.25,.2,.2,.25,.2}

x = .25 + .25 + .2 + .2 + .25 + .2 = 1.35 (163)

Then divide each element in {.25, .25, .2, .2, .25, .2} by 1.35

{.25/(1.35), .25/(1.35), .2/(1.35), .2/(1.35), .25/(1.35), .2/(1.35)}

which gives us the probability distribution:

{5/27, 5/27, 4/27, 4/27, 5/27, 4/27}

Hence,

P(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) = {5/27, 5/27, 4/27, 4/27, 5/27, 4/27} (164)

8.3.4. Step 3d. Take the shannon entropy of eq. 164:

E(P(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1)))) =∑

x∈P(L((−.9,1),S(C(
√
2/6,G⋆1 ,1),1)))

−x log2 x =
∑

x∈{5/27,5/27,4/27,4/27,5/27,4/27}
−x log2 x =

− (5/27) log2(5/27)− (5/27) log2(5/27)− (4/27) log2(4/27)− (4/27) log2(4/27)− (5/27) log2(5/27)− (4/27) log2(5/27) =

− (15/27) log2(5/27)− (12/27) log2(4/27) ≈ 2.57604

We shorten E(P(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1)))) to E(L((−.9, 1),S(C(

√
2/6, G⋆1, 1), 1))), giving us:

E(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (165)

8.3.5. Step 3e. Take the entropy, w.r.t all pathways, of the sample:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (166)

In other words, we’ll compute:

E(L(S(C(
√
2/6, G⋆1, 1), 1))) = sup

x0∈S(C(
√
2/6,G⋆1 ,1),1)

E(L(x0,S(C(
√
2/6, G⋆1, 1), 1)))
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We do this by repeating §8.3.1-§8.3.4 for different x0 ∈ S(C(
√
2/6, G⋆1, 1), 1))) (i.e., in the equation with multiple

values, see note 10)

E(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (167)

E(L((−.65, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.3131, 2.377604 (168)

E(L((−.4, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.3131 (169)

E(L((−.2,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (170)

E(L((−.1,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 1.86094 (171)

E(L((−.3,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 1.85289 (172)

E(L((.55, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.08327 (173)

E(L((.75, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.31185 (174)

E(L((1, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.2622 (175)

Hence, since the largest value out of eq. 167-175 is 2.57604:

E(L(S(C(
√
2/6, G⋆1, 1), 1))) = sup

x0∈S(C(
√
2/6,G⋆1 ,1),1)

E(L(x0,S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604
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