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Abstract. Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. In this paper, we
average a everywhere surjective f whose graph has zero Hausdorff measure in its dimension, taking finite

values only. Since, by definition, the expected value of f is indeterminate, choose any sequence of bounded
functions converging to f with the same satisfying and finite expected value. Note, “satisfying” is determined
by a leading question in §4.2 which uses a rate of expansion of the sequence of each bounded functions’ graph

(§5.1) and a “measure” involving covers, samples, pathways, and entropy (§5.2).

Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. Let dimH(·) be the Hausdorff
dimension, where HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra.

1. Motivation

Suppose, we define everywhere surjective f :

Let (A,T) be a standard topology. A function f : A ⊆ Rn → R is everywhere surjective from
A to R, if f [V ] = R for every V ∈ T.

If f is everywhere surjective, whose graph has zero Hausdorff measure in its dimension (e.g., [2]), we want
a unique, satisfying (§4) average of f , taking finite values only. However, the expected value of f :

E[f ] =
1

HdimH(A)(A)

∫
A

f dHdimH(A)

is undefined since the integral of f is undefined: i.e., the graph of f has Hausdorff dimension n+ 1 with zero
(n+ 1)-dimensional Hausdorff measure. Thus, w.r.t a reference point C ∈ Rn+1 (§4.1), choose any sequence
of bounded functions converging to f (§2.1) with the same satisfying (§4) and finite expected value (§2.2).

To account for the previous sentence, we solve two additional problems involving prevalence and shyness
(§2.3, §3.1):

(1) If F ⊂ RA is the set of all f ∈ RA, where E[f ] is finite, then F is shy (§2.3).
(2) If F ⊂ RA is the set of all f ∈ RA, where two sequences of bounded functions that converge to f

(§2.1) have different expected values (§2.2), then F is prevelant (§2.3).
Note, with this paper [3], we gain more insight into the motivation.

2. Preliminaries

2.1. Definition of sequences of Functions Converging to f . Let n ∈ N and suppose function f : A ⊆
Rn → R, where A and f are Borel.

The sequence of functions (fr)r∈N, where (Ar)r∈N is a sequence of sets and function fr : Ar → R, converges
to f when:

For any x ∈ A, there exists a sequence x ∈ Ar s.t. x → (x1, · · ·, xn) and fr(x) → f(x1, · · ·, xn).
This is equivalent to:

(fr, Ar) → (f,A)
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2.2. Expected Value of Sequences of Functions Converging to f . Thus, suppose:

• (fr, Ar) → (f,A) (§2.1)
• | · | is the absolute value
• dimH(·) be the Hausdorff dimension
• HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra
• the integral is defined, w.r.t the Hausdorff measure in its dimension

The expected value of (fr)r∈N is a real number E[fr], when the following is true:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(
r ≥ N ⇒

∣∣∣∣ 1

HdimH(Ar)(Ar)

∫
Ar

fr dHdimH(Ar) − E[fr]
∣∣∣∣ < ϵ

)
(1)

when no such E[fr] exists, E[fr] is infinite or undefined. (If the graph of f has zero Hausdorff measure in its

dimension, replace HdimH(Ar) with the generalized Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)

2.3. Definition of Prevalent and Shy Sets. Here is the source [4, def. 3.1]:
A Borel set E ⊂ X is said to be prevalent if there exists a Borel measure µ on X such that:

(1) 0 < µ(C) <∞ for some compact subset C of X, and
(2) the set E+x has full µ-measure (that is, the complement of E+x has measure zero) for all x ∈ X.

More generally, a subset F of X is prevalent if F contains a prevalent Borel Set.
Additionally:

• The complement of a prevelant set is a shy set.

Thus, notice:

• If F ⊂ X is prevelant, we say “almost every” element of X lies in F .
• If F ⊂ X is shy, we say “almost no” element of X lies in F .

3. Motivation to Answer §1

Let n ∈ N and suppose function f : A ⊆ Rn → R, where A and f are Borel. Let dimH(·) be the Hausdorff
dimension, where HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra.

3.1. Problems. If E[f ] is the expected value of f , w.r.t the Hausdorff measure in its dimension,

E[f ] =
1

HdimH(A)(A)

∫
A

f dHdimH(A)

then suppose:

• B(X) is the set of all bounded Borel subsets of set X
• B(X) is the set of all bounded Borel functions with a domain X

therefore:

(1) If f is everywhere surjective (§1), whose graph has zero Hausdorff measure in its dimension (e.g.,
[2]), E[f ] is undefined and non-finite.

(2) If F ⊂ RA is the set of all f ∈ RA, where E[f ] is finite, then F is shy (§2.3).
(3) For all r, v ∈ N, suppose Ar, Bv ∈ B(Rn), where fr ∈ B(Ar) and gv ∈ B(Bv). If F ⊂ RA is the

set of all f ∈ RA, where (fr, Ar), (gv, Bv) → (f,A) (§2.1) and E[fr] ̸= E[gv] (§2.2), then F is
prevalent (§2.3).

3.2. Approach to Solving the Statements In §3.1. To solve the statements in §3.1 at once, consider the
following:

For all r ∈ N, suppose B ⊂ B(Rn) is an arbitrary set, where Ar ∈ B and B ⊂ B(Ar) is an
arbitrary set, such that fr ∈ B. If F ⊂ RA is the set of all f ∈ RA, where (fr, Ar) → (f,A)
(§2.1) and E[fr] (§2.2) is unique, satisfying (§4), and finite, then F should be:

(1) a prevalent (§2.3) subset of RA
(2) If not prevalent (§2.3) then neither a prevalent (§2.3) nor shy (§2.3) subset of RA.

Question: How do we define “satisfying” in §3.2, w.r.t a reference point C ∈ Rn+1, so that E[fr] satisfies
§1? (In §4, we give a partial solution to this question, where (fr)r∈N = (f⋆r )r∈N.)
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4. Example of Partial Solution Explaining The Term “Satisfying” In §1 and §3.2

We ask a leading question in §4.2 with an answer that should solve the question in §3.2.

4.1. Preliminaries. Suppose, for all r, v ∈ N, there exists arbitrary set B ⊂ B(Rn), where A⋆r ∈ B and
B ⊂ B(A⋆r) (§3.1) such that:

• f⋆r ∈ B
• A⋆⋆v ∈ B(Rn) \ B and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B)
• (G⋆r)r∈N = (graph(f⋆r ))r∈N is the sequence of the graph of each f⋆r
• □ is the logical symbol for “it’s necessary”
• C is a reference point in Rn+1 (e.g., the origin)
• E is the fixed, expected rate of expansion of (G⋆r)r∈N w.r.t a reference point C: e.g., E = 1
• E(C,G⋆r) is the actual rate of expansion of (G⋆r)r∈N w.r.t a reference point C (§5.1)

4.2. Leading Question.

Does there exist a unique choice function, which for all r ∈ N, chooses a unique set B ⊂ B(Rn),
where A⋆r ∈ B and a unique set B ⊂ B(A⋆r) (§3.1) such that f⋆r ∈ B, where:
(1) (f⋆r , A

⋆
r) → (f,A) (§2.1)

(2) For all v ∈ N, where for all A⋆⋆v ∈ B(Rn) \ B and f⋆⋆v ∈ B(A⋆⋆v ) ∪ (B(A⋆r) \ B), assuming
(f⋆⋆v , A⋆⋆v ) → (f,A) (§2.1), the “measure” (§5.2.1, §5.2.2) of (G⋆r)r∈N = (graph(f⋆r ))r∈N
(§4.1) must increase at a rate linear or superlinear to that of (G⋆⋆v )v∈N = (graph(f⋆⋆v ))v∈N
(§4.1)

(3) E[f⋆r ] is unique and finite (§2.2)
(4) For someA⋆r ∈ B and f⋆r ∈ B satisfying (1), (2) and (3), when f is unbounded (i.e, skip (4)

when f is bounded), for all s ∈ N and for any set B′ ⊂ B(Rn), where A⋆⋆⋆s ∈ B′, and for
any set B′ ⊂ B(A⋆⋆⋆s ), where ⋆ 7→ ⋆ ⋆ ⋆, r 7→ s, B 7→ B′, and B 7→ B′ in (1), (2) and (3),
s.t.¬□(E[f⋆r ] = E[f⋆⋆⋆s ]) (§2.2, §4.1), when f⋆⋆⋆s ∈ B′ satisfies (1), (2) and (3):

• If the absolute value is | · | and the (n+ 1)-th coordinate of C (§4.1) is xn+1, |E[f⋆r ]−
xn+1| ≤ |E[f⋆⋆⋆s ]− xn+1| (§2.2)

• If r ∈ N, then for all linear s1 : N → N, where s = s1(r) and the Big-O notation isO,
there exists a functionK : R → R, where the absolute value is | · | and (§4.1):

|E(C,G⋆r)− E| =O(K(|E(C,G⋆⋆⋆s )− E|))
=O(K(|E(C,G⋆⋆⋆s1(r)

)− E|))
such that:

0 ≤ lim
x→+∞

K(x)/x < +∞

In simpler terms, “the rate of divergence” of |E(C,G⋆r)−E| (§4.1) is less than or equal
to “the rate of divergence” of |E(C,G⋆⋆⋆s )− E| (§4.1).

(5) When set F ⊂ RA is the set of all f ∈ RA, where a choice function chooses a collection
B ⊂ B(Rn), whereA⋆r ∈ B and B ⊂ B(A⋆r) such that f⋆r ∈ B satisfies (1), (2), (3) and (4),
then F should be:

(a) a prevalent (§2.3) subset ofRA
(b) If not (a), then neither a prevalent (§2.3) nor shy (§2.3) subset ofRA

(6) Out of all choice functions that satisfy (1), (2), (3), (4) and (5), we choose the one with the
simplest form, meaning for each choice function fully expanded, we take the one with the
fewest variables/numbers?

Question 2How do we improve §4.2, so the answer satisfies §3.2 and E[f⋆r ] satisfies §1?

5. Appendix

5.1. Actual Rate of Expansion of (G⋆r) w.r.t a reference point C. Suppose:

(1) (G⋆r)r∈N is a sequence of the graph of each f⋆r (§4.1)
(2) C is a reference point inRn+1

(3) Q,R ∈ Rn+1
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(4) Q = (q1, · · ·, qn+1) andR = (r1, · · ·, rn+1), where:

Q−R = (q1 − r1, · · ·, qn+1 − rn+1)

(5) ||Q|| =
√
q21 + · · ·+ q2n+1 and ||R|| =

√
r21 + · · ·+ r2n+1

(6) C −G⋆r = {C − y : y ∈ G⋆r}
(7) dimH(·) be the Hausdorff dimension
(8) HdimH(·)(·) is the Hausdorff measure in its dimension on the Borel σ-algebra

For any r ∈ N, take the (n+ 1)-dimensional Euclidean distance between a reference point C ∈ Rn+1 and each
point inG⋆r :

G(C,G⋆r) = {||C − y|| : y ∈ G⋆r}
then average G(C,G⋆r):

Avg(G(C,G⋆r)) =
1

HdimH(C−G⋆
r)(C −G⋆r)

∫
C−G⋆

r

||(x1, · · ·, xn+1)|| dHdimH(C−G⋆
r)

where the actual rate of expansion of (G⋆r)r∈N is:

E(C,G⋆r) = Avg(G(C,G⋆r+1))−Avg(G(C,G⋆r))

If E(C,G⋆r) is undefined, replace the Hausdorff measureHdimH(C−G⋆
r) with the generalized Hausdorff measure

H ϕµ
h,g(q,t) [1, p.26-33]

5.2. Defining the “Measure”.

5.2.1. Preliminaries. We define the “measure” of (G⋆r)r∈N, in §5.2.2, which is the sequence of the graph of each
f⋆r (§4.1). To understand this “measure”, continue reading.

(1) For every r ∈ N, “over-cover”G⋆r with minimal, pairwise disjoint sets of equalHdimH(G⋆
r) measure.

(We denote the equal measures ε, where the former sentence is defined C(ε,G⋆r , ω): i.e., ω ∈ Ωε,r
enumerates all collections of these sets coveringG⋆r . In case this step is unclear, see §6.1. Moreover,
when there exists a r ∈ N, whereHdimH(G⋆

r)(G⋆
r) = 0, replace the Hausdorff measureHdimH(G⋆

r) with

the generalized Hausdorff measure H ϕ
µ
h,g

(q,t) [1, p.26-33].)
(2) For every ε, r and ω, take a sample point from each set in C(ε,G⋆r , ω). The set of these points is

“the sample” which we define S(C(ε,G⋆r , ω), ψ): i.e., ψ ∈ Ψε,r,ω enumerates all possible samples of
C(ε,G⋆r , ω). (If this is unclear, see §6.2.)

(3) For every ε, r, ω and ψ,
(a) Take a “pathway” of line segments: we start with a line segment from arbitrary point x0 of

S(C(ε,G⋆r , ω), ψ) to the sample point with the smallest (n+ 1)-dimensional Euclidean distance to
x0 (i.e., whenmore than one sample point has the smallest (n+1)-dimensional Euclidean distance
to x0, take either of those points). Next, repeat this process until the “pathway” intersects with
every sample point once. (In case this is unclear, see §6.3.1.)

(b) Take the set of the length of all segments in (a), except for lengths that are outliers (i.e., for any
constant C > 0, the outliers are more than C times the interquartile range of the length of all line
segments as r → ∞ or ε→ 0). Define this L(x0,S(C(ε,G⋆r , ω), ψ)). (If this is unclear, see §6.3.2.)

(c) Multiply remaining lengths in the pathway by a constant so they add up to one (i.e., a probability
distribution). This will be denoted P(L(x0,S(C(ε,G⋆r , ω), ψ))). (In case this is unclear, see §6.3.3)

(d) Take the shannon entropy of step (c). We define this:

E(P(L(x0,S(C(ε,G⋆r , ω), ψ)))) =
∑

x∈P(L(x0,S(C(ε,G⋆
r ,ω),ψ)))

−x log2 x

which will be shortened to E(L(x0,S(C(ε,G⋆r , ω), ψ))). (If this is unclear, see §6.3.4.)
(e) Maximize the entropy w.r.t all ”pathways”. This we will denote:

E(L(S(C(ε,G⋆r , ω), ψ))) = sup
x0∈S(C(ε,G⋆

r ,ω),ψ)

E(L(x0,S(C(ε,G⋆r , ω), ψ)))

(In case this is unclear, see §6.3.5.)
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(4) Therefore, themaximum entropy, using (1) and (2) is:

Emax(ε, r) = sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

E(L(S(C(ε,G⋆r , ω), ψ)))

5.2.2. What Am I “Measuring”? We define (G⋆r)r∈N and (G⋆⋆v )v∈N, which respectively are the sequences of the
graph for each of the bounded functions f⋆r and f⋆⋆v (§4.1). Hence, for constant ε and cardinality | · |

(a) Using (2) and (3e) of section 5.2.1, suppose:

|S(C(ε,G⋆
r , ω), ψ)| =

inf
{∣∣S(C(ε,G⋆⋆

v , ω′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆
v , ω′), ψ′))) ≥ E(L(S(C(ε,G⋆

r , ω), ψ)))
}

then (using |S(C(ε,G⋆r , ω), ψ)|) we get:

α (ε, r, ω, ψ) = |S(C(ε,G⋆
r , ω), ψ)|/ |S(C(ε,G⋆

r , ω), ψ))|

(b) Also, using (2) and (3e) of section 5.2.1, suppose:

|S(C(ε,G⋆
r , ω), ψ)| =

sup
{∣∣S(C(ε,G⋆⋆

v , ω′), ψ′)
∣∣ : v ∈ N, ω′ ∈ Ωε,v , ψ

′ ∈ Ψε,v,ω , E(L(S(C(ε,G⋆⋆
v , ω′), ψ′))) ≤ E(L(S(C(ε,G⋆

r , ω), ψ)))
}

then (using |S(C(ϵ,G⋆r , ω), ψ)|) we also get

α (ε, r, ω, ψ) = |S(C(ε,G⋆
r , ω), ψ)|/ |S(C(ε,G⋆

r , ω), ψ))|

(1) If using α (ϵ, r, ω, ψ) and α (ϵ, r, ω, ψ) we have:

1 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) , lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ) < +∞

then what I’m measuring from (G⋆r)r∈N increases at a rate superlinear to that of (G⋆⋆v )v∈N.
(2) If using equationsα (ε, v, ω, ψ) andα (ε, v, ω, ψ) (where, usingα (ε, r, ω, ψ) andα (ε, r, ω, ψ), we swap rwith

v andG⋆r withG
⋆⋆
v ) we get:

1 < lim sup
ε→0

lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) , lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ) < +∞

then what I’m measuring from (G⋆r)r∈N increases at a rate sublinear to that of (G⋆⋆v )v∈N.

(3) If using equations α (ε, r, ω, ψ), α (ε, r, ω, ψ), α (ε, v, ω, ψ), and α (ε, v, ω, ψ), we both have:

(a) lim sup
ε→0

lim sup
r→∞

sup
ω∈Ωε,r

sup
ψ∈Ψε,r,ω

α (ε, r, ω, ψ)or lim inf
ε→0

lim inf
r→∞

inf
ω∈Ωε,r

inf
ψ∈Ψε,r,ω

α (ε, r, ω, ψ)areequal tozero,

one or +∞
(b) lim sup

ε→0
lim sup
v→∞

sup
ω∈Ωε,v

sup
ψ∈Ψε,v,ω

α (ε, v, ω, ψ)or lim inf
ε→0

lim inf
v→∞

inf
ω∈Ωε,v

inf
ψ∈Ψε,v,ω

α (ε, v, ω, ψ)areequaltozero,

one or +∞
then what I’m measuring from (G⋆r)r∈N increases at a rate linear to that of (G⋆⋆v )v∈N.

6. Illustration of §5.2.1

6.1. Example of §5.2.1, step 1. Suppose

(1) A = R
(2) When defining f : A→ R:

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(2)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N
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Then one example ofC(
√
2/6, G⋆1, 1), using §5.2.1 step 1, (whereG⋆1 = ({(x, f(x)) : −1 ≤ x ≤ 1})r∈N) is:{{

(x, f(x)) : −1 ≤ x <

√
2 − 6

6

}
,

{
(x, f(x)) :

√
2 − 6

6
≤ x <

2
√
2 − 6

6

}
,

{
(x, f(x)) :

2
√
2 − 6

6
≤ x <

3
√
2 − 6

6

}
{
(x, f(x)) :

3
√
2 − 6

6
≤ x <

4
√
2 − 6

6

}
,

{
(x, f(x)) :

4
√
2 − 6

6
≤ x <

5
√
2 − 6

6

}
,

{
(x, f(x)) :

5
√
2 − 6

6
≤ x <

6
√
2 − 6

6

}
(3)

{
(x, f(x)) :

6
√
2 − 6

6
≤ x <

7
√
2 − 6

6

}
,

{
(x, f(x)) :

7
√
2 − 6

6
≤ x <

8
√
2 − 6

6

}
,

{
(x, f(x)) :

8
√
2 − 6

6
≤ x ≤

9
√
2 − 6

6

}}

Note, the length of each partition is
√
2/6, where the borders could be approximated as:{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (4)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

which is illustrated using alternating orange/black lines of equal length coveringG⋆1 (i.e., the black vertical lines
are the smallest and largest x-cooridinates ofG⋆1).

Figure 1. The alternating orange& black lines are the “covers” and the vertical lines are the
boundaries ofG⋆1.

(Note, the alternating covers in fig. 1 satisfy step (1) of §5.2.1, because the Hausdorff measure in its dimension

of the covers is
√
2/6 and there are 9 covers over-coveringG⋆1: i.e.,

Definition 1 (Minimum Covers of Measure ε =
√
2/6 covering G⋆1). We can compute the minimum

covers of C(
√
2/6, G⋆1, 1), using the formula:

⌈HdimH(G
⋆
1)(G⋆1)/(

√
2/6)⌉

where ⌈HdimH(G⋆
1)(G⋆

1)/(
√
2/6)⌉ = ⌈Length([−1, 1])/(

√
2/6)⌉ = ⌈2/(

√
2/6)⌉ = ⌈6

√
2⌉ = ⌈6(1.4)⌉ = ⌈8 + .4⌉ = 9).

Note there are other examples ofC(
√
2/6, G⋆1, ω) for different ω. Here is another case:

Figure 2. This is similar to figure 1, except the start-points of the covers are shifted all the
way to the left.
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which can be defined (see eq. 3 for comparison):{{
(x, f(x)) :

6 − 9
√
2

6
≤ x <

6 − 8
√
2

6

}
,

{
(x, f(x)) :

6 − 8
√
2

6
≤ x <

6 − 7
√
2

6

}
,

{
(x, f(x)) :

6 − 7
√
2

6
≤ x <

6 − 6
√
2

6

}
{
(x, f(x)) :

6 − 6
√
2

6
≤ x <

6 − 5
√
2

6

}
,

{
(x, f(x)) :

6 − 5
√
2

6
≤ x <

6 − 4
√
2

6

}
,

{
(x, f(x)) :

6 − 4
√
2

6
≤ x <

6 − 3
√
2

6

}
(5)

{
(x, f(x)) :

6 − 3
√
2

6
≤ x <

6 − 2
√
2

6

}
,

{
(x, f(x)) :

6 − 2
√
2

6
≤ x <

6 −
√
2

6

}
,

{
(x, f(x)) :

6 −
√
2

6
≤ x ≤ 1

}}

In the case ofG⋆1, there are uncountable different covers C(
√
2/6, G⋆1, ω) which can be used. For instance, when

0 ≤ α ≤ (12− 9
√
2)/6 (i.e., ω = α+ 1) consider:{{

(x, f(x)) : α − 1 ≤ x < α +

√
2 − 6

6

}
,

{
(x, f(x)) : α +

√
2 − 6

6
≤ x < α +

2
√
2 − 6

6

}
,

{
(x, f(x)) : α +

2
√

2 − 6

6
≤ x < α +

3
√
2 − 6

6

}
{
(x, f(x)) : α +

3
√
2 − 6

6
≤ x < α +

4
√

2 − 6

6

}
,

{
(x, f(x)) : α +

4
√
2 − 6

6
≤ x < α +

5
√
2 − 6

6

}
,

{
(x, f(x)) : α +

5
√
2 − 6

6
≤ x < α +

6
√

2 − 6

6

}
,

{
(x, f(x)) : α +

6
√
2 − 6

6
≤ x < α +

7
√
2 − 6

6

}
(6)

{
(x, f(x)) : α +

7
√
2 − 6

6
≤ x < α +

8
√

2 − 6

6

}
,

{
(x, f(x)) : α +

8
√
2 − 6

6
≤ x ≤ α +

9
√
2 − 6

6

}}

When α = 0 and ω = 1, we get figure 1 and when α = (12− 9
√
2)/6 and ω = (18− 9

√
2)/6, we get figure 2

6.2. Example of §5.2.1, step 2. . Suppose:

(1) A = R
(2) When defining f : A→ R: i.e.,

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(7)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N
(4) G⋆1 = {(x, f(x)) : −1 ≤ x ≤ 1}
(5) C(

√
2/6, G⋆1, 1), using eq. 4 and fig. 1, which is approximately{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (8)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

Then, an example of S(C(
√
2/6, G⋆1, 1), 1) is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (9)

Below, we illustrate the sample: i.e., the set of all blue points in each orange and black line of C(
√
2/6, G⋆1, 1)

coveringG⋆1:

Figure 3. The blue points are the “sample points”, the alternative black and orange lines are
the “covers”, and the red lines are the smallest & largest x-coordinate ofG⋆1.
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Note, there are multiple samples that can be taken, as long as one sample point is taken from each cover in
C(

√
2/6, G⋆1, 1).

6.3. Example of §5.2.1, step 3. Suppose

(1) A = R
(2) When defining f : A→ R:

f(x) =


1 x < 0

−1 0 ≤ x < 0.5

0.5 0.5 ≤ x

(10)

(3) (G⋆r)r∈N = ({(x, f(x)) : −r ≤ x ≤ r})r∈N
(4) G⋆1 = {(x, f(x)) : −1 ≤ x ≤ 1}
(5) C(

√
2/6, G⋆1, 1), using eq. 4 and fig. 1, is approx.{

{(x, f(x)) : −1 ≤ x < −.764} , {(x, f(x)) : −.764 ≤ x < −.528} , {(x, f(x)) : −.528 ≤ x < −.293}
{(x, f(x)) : −.293 ≤ x < −.057} , {(x, f(x)) : −.057 ≤ x < .178} , {(x, f(x)) : .178 ≤ x < .414} (11)

{(x, f(x)) : .414 ≤ x < .65} , {(x, f(x)) : .65 ≤ x < .886} , {(x, f(x)) : .886 ≤ x ≤ 1.121}
}

(6) S(C(
√
2/6, G⋆1, 1), 1), using eq. 9, is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (12)

Therefore, consider the following process:

6.3.1. Step 3a. If S(C(
√
2/6, G⋆1, 1), 1) is:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (13)

suppose x0 = (−.9, 1). Note, the following:

(1) x1 = (−.65, 1) is the next point in the “pathway” since it’s a point in S(C(
√
2/6, G⋆1, 1), 1) with the

smallest 2-d Euclidean distance to x0 instead of x0.
(2) x2 = (−.4, 1) is the thirdpoint since it’s apoint inS(C(

√
2/6, G⋆1, 1), 1)with the smallest 2-dEuclidean

distance to x1 instead of x0 and x1.
(3) x3 = (−.2, 1) is the fourth point since it’s a point in S(C(

√
2/6, G⋆1, 1), 1) with the smallest 2-d

Euclidean distance to x2 instead of x0, x1, and x2.
(4) we continue this process, where the “pathway” of S(C(

√
2/6, G⋆1, 1), 1) is:

(−.9, 1) → (−.65, 1) → (−.4, 1) → (−.2, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1) (14)

Note 1. If more than one point has the minimum 2-d Euclidean distance from x0, x1, x2, etc. take all
potential pathways: e.g., using the sample in eq. 13, if x0 = (−.65, 1), then since (−.9, 1) and (−.4, 1) have
the smallest Euclidean distance to (−.65, 1), take two pathways:

(−.65, 1) → (−.9, 1) → (−.4, 1) → (−.2, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1)

and also:

(−.65, 1) → (−.4, 1) → (−.2, 1) → (−.9, 1) → (.55, .5) → (.75, .5) → (1, .5) → (.3,−1) → (.1,−1)

6.3.2. Step 3b. Next, take the length of all line segments in each pathway. In other words, suppose d(P,Q) is the
2-d Euclidean distance between points P,Q ∈ R2. Using the pathway in eq. 14, we want:

{d((−.9, 1), (−.65, 1)), d((−.65, 1), (−.4, 1)), d((−.4, 1), (−.2, 1)), d((−.2, 1), (.55, .5)), (15)

d((.55, .5), (.75, .5)), d((.75, .5), (1, .5)), d((1, .5), (.3,−1)), d((.3,−1), (.1,−1))}

Whose distances can be approximated as:

{.25, .25, .2, .901389, .2, .25, 1.655295, .2}

Also, we see the outliers are .901389 and 1.655295 (i.e., notice that the outliers are more prominent for ε≪
√
2/6).

Therefore, remove .901389 and 1.655295 from our set of lengths:

{.25, .25, .2, .2, .25, .2}
This is illustrated using:
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Figure 4. The black arrows are the “pathways” whose lengths aren’t outliers. The length of
the red arrows in the pathway are outliers.

Hence, when x0 = (−.9, 1), using §5.2.1 step 3b & eq. 13, we note:

L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1)) = {.25, .25, .2, .2, .25, .2} (16)

6.3.3. Step 3c. To convert the set of distances in eq. 16 into a probability distribution, we take:∑
x∈{.25,.25,.2,.2,.25,.2}

x = .25 + .25 + .2 + .2 + .25 + .2 = 1.35 (17)

Then divide each element in {.25, .25, .2, .2, .25, .2} by 1.35

{.25/(1.35), .25/(1.35), .2/(1.35), .2/(1.35), .25/(1.35), .2/(1.35)}

which gives us the probability distribution:

{5/27, 5/27, 4/27, 4/27, 5/27, 4/27}

Hence,

P(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) = {5/27, 5/27, 4/27, 4/27, 5/27, 4/27} (18)

6.3.4. Step 3d. Take the shannon entropy of eq. 18:

E(P(L((−.9, 1),S(C(
√
2/6, G⋆

1, 1), 1)))) =∑
x∈P(L((−.9,1),S(C(

√
2/6,G⋆

1 ,1),1)))

−x log2 x =
∑

x∈{5/27,5/27,4/27,4/27,5/27,4/27}
−x log2 x =

− (5/27) log2(5/27)− (5/27) log2(5/27)− (4/27) log2(4/27)− (4/27) log2(4/27)− (5/27) log2(5/27)− (4/27) log2(5/27) =

− (15/27) log2(5/27)− (12/27) log2(4/27) ≈ 2.57604

We shorten E(P(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1)))) to E(L((−.9, 1),S(C(

√
2/6, G⋆1, 1), 1))), giving us:

E(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (19)
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6.3.5. Step 3e. Take the entropy, w.r.t all pathways, of the sample:

{(−.9, 1), (−.65, 1), (−.4, 1), (−.2, 1), (.1,−1), (.3,−1), (.55, .5), (.75, .5), (1, .5)} (20)

In other words, we’ll compute:

E(L(S(C(
√
2/6, G⋆1, 1), 1))) = sup

x0∈S(C(
√
2/6,G⋆

1 ,1),1)

E(L(x0,S(C(
√
2/6, G⋆1, 1), 1)))

We do this by repeating §6.3.1-§6.3.4 for different x0 ∈ S(C(
√
2/6, G⋆1, 1), 1))) (i.e., in the equation with

multiple values, see note 1)

E(L((−.9, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (21)

E(L((−.65, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.3131, 2.377604 (22)

E(L((−.4, 1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.3131 (23)

E(L((−.2,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604 (24)

E(L((−.1,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 1.86094 (25)

E(L((−.3,−1),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 1.85289 (26)

E(L((.55, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.08327 (27)

E(L((.75, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.31185 (28)

E(L((1, .5),S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.2622 (29)

Hence, since the largest value out of eq. 21-29 is 2.57604:

E(L(S(C(
√
2/6, G⋆1, 1), 1))) = sup

x0∈S(C(
√
2/6,G⋆

1 ,1),1)

E(L(x0,S(C(
√
2/6, G⋆1, 1), 1))) ≈ 2.57604
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