DEFINING AN UNIQUE, SATISFYING EXPECTED VALUE FROM CHOSEN
SEQUENCES OF BOUNDED FUNCTIONS CONVERGING TO A EVERYWHERE
SURJECTIVE FUNCTION

BHARATH KRISHNAN

ABSTRACT. Let n € N and suppose function f: A C R™ — R, where A and f are Borel. In this paper, we
average a everywhere surjective f whose graph has zero Hausdorff measure in its dimension, taking finite
values only. Since, by definition, the expected value of f is indeterminate, choose any sequence of bounded
functions converging to f with the same satisfying and finite expected value. Note, “satisfying” is determined
by a leading question in which uses a rate of expansion of the sequence of each bounded functions’ graph
(§5.1) and a “measure” involving covers, samples, pathways, and entropy (§5.2]).

Let n € N and suppose function f: A C R™ — R, where A and f are Borel. Let dimy(-) be the Hausdorff
dimension, where H4™1()(.) is the Hausdorff measure in its dimension on the Borel -algebra.

1. MOTIVATION

Suppose, we define everywhere surjective f:
Let (A, T) be a standard topology. A function f: A C R™ — R is everywhere surjective from
Ato R, if f[V] =R for every V € T.

If f is everywhere surjective, whose graph has zero Hausdorff measure in its dimension (e.g., [2]), we want
a unique, satisfying ( average of f, taking finite values only. However, the expected value of f:

_ 1 dimp (A)
E[f] - ’HdimH(A)(A) /Ade

is undefined since the integral of f is undefined: i.e., the graph of f has Hausdorff dimension n + 1 with zero

(n + 1)-dimensional Hausdorff measure. Thus, w.r.t a reference point C' € R*+! (, choose any sequence

of bounded functions converging to f ( with the same satisfying ( and finite expected value (
To account for the previous sentence, we solve two additional problems involving prevalence and shyness

(23 §1):
(1) If F C R4 is the set of all f € R*, where E[f] is finite, then F is shy (§2.3).
(2) If F C R4 is the set of all f € R4, where two sequences of bounded functions that converge to f

(§2.1) have different expected values (§2.2)), then F is prevelant (§2.3).

Note, with this paper [3], we gain more insight into the motivation.

2. PRELIMINARIES

2.1. Definition of sequences of Functions Converging to f. Let n € N and suppose function f: A C
R™ — R, where A and f are Borel.

The sequence of functions (f),en, where (A, )qen is a sequence of sets and function f,. : A, — R, converges
to f when:

For any x € A, there exists a sequence x € A, s.t. X = (z1, -+, 2,) and fr(x) = f(x1, -, 2n).

This is equivalent to:

(f7'7 AT) - (f7 A)
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2.2. Expected Value of Sequences of Functions Converging to f. Thus, suppose:
(fr Ar) = (£, A) (1)

| - | is the absolute value

dimpy(-) be the Hausdorff dimension

HAmu() (1) is the Hausdorff measure in its dimension on the Borel o-algebra

the integral is defined, w.r.t the Hausdorff measure in its dimension

The expected value of (f,)ren is a real number E[f,], when the following is true:
dimg (Ar)
V(e > 0)3(N € N)YV(r € ) (r >N = 'W/ fr dH E[fr]’ < e> (1)

when no such E[f,] exists, E[f,] is infinite or undefined. (If the graph of f has zero Hausdorff measure in its
dimension, replace H4m1(Ar) with the generalized Hausdorff measure #%h.o(@? [1, p.26-33].)

2.3. Definition of Prevalent and Shy Sets. Here is the source [, def. 3.1]:
A Borel set E C X is said to be prevalent if there exists a Borel measure p on X such that:

(1) 0 < pu(C) < oo for some compact subset C of X, and
(2) the set E +x has full py-measure (that is, the complement of E + x has measure zero) for all z € X.

More generally, a subset F' of X is prevalent if F' contains a prevalent Borel Set.
Additionally:

e The complement of a prevelant set is a shy set.
Thus, notice:

o If FF C X is prevelant, we say “almost every” element of X lies in F.
o If FFC X is shy, we say “almost no” element of X lies in F'.

3. MOTIVATION TO ANSWER

Let n € N and suppose function f : A C R®™ — R, where A and f are Borel. Let dimg(-) be the Hausdorff
dimension, where H4™#()(.) is the Hausdorff measure in its dimension on the Borel o-algebra.

3.1. Problems. If E[f] is the expected value of f, w.r.t the Hausdorff measure in its dimension,

E[f] - ’HdimH(A)(A) /Ade
then suppose:

e B(X) is the set of all bounded Borel subsets of set X
e B(X) is the set of all bounded Borel functions with a domain X

therefore:

(1) If f is everywhere surjective (7 whose graph has zero Hausdorff measure in its dimension (e.g.,
[2]), E[f] is undefined and non-finite.

(2) If F C R4 is the set of all f € R4, where E[f] is finite, then F is shy (§2.3]

(3) For all r,v € N, suppose A, B, € B(R"), where f,. € B(A,) and g, € %(BU) If F c R4 is the
set of all f € R4, where (f, A,), (go, By) = (f,A) (8.1) and E[f,] # Elg,] (§2.2), then F is
prevalent (§2.3)).

3.2. Approach to Solving the Statements In §3.1] To solve the statements in §3.1| at once, consider the
following:
For all » € N, suppose B C B(R") is an arbitrary set, where A, € B and & C B(A,) is an
arbitrary set, such that f. € 4. If F C R4 is the set of all f € R4, where (f,, 4,) — (f, A)
(§2.1) and E[f,] (§2-2) is unique, satisfying (§4)), and finite, then F should be:
(1) a prevalent (§2.3) subset of R4
(2) If not prevalent ( then neither a prevalent (§2.3) nor shy (§2.3)) subset of R4.
Question: How do we define “satisfying” in w.r.t a reference point C' € R""1  so that E[f,] satisfies
(In §4] we give a partial solution to this question, where (f;)ren = (f¥)ren.)
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4. EXAMPLE OF PARTIAL SOLUTION EXPLAINING THE TERM “SATISFYING” IN AND §3.2|

We ask a leading question in with an answer that should solve the question in §3.2)

4.1. Preliminaries. Suppose, for all r,v € N, there exists arbitrary set B C B(R"), where A% € B and

# C B(A;) ($.1) such that:

fre®

Ay € B(R™)\ B and f2* € B(AL) U(B(AL) \ 2)

(G¥)ren = (graph(f}))ren is the sequence of the graph of each f*

O is the logical symbol for “it’s necessary”

C is a reference point in R"™! (e.g., the origin)

E is the fixed, expected rate of expansion of (G}),.cny w.r.t a reference point C: e.g., E =1
E(C,Gy) is the actual rate of expansion of (G})yen W.r.t a reference point C' (§5.1])

4.2. Leading Question.

Does there exist a unique choice function, which for all € N, chooses a unique set B C B(R"),

where A% € B and a unique set 2 C B(A4;) (§3.1) such that f; € %, where:

(1) (fr. A7) = (£,4) ()

(2) For all v € N Where for all A%* € B(R") \B and f** € %(A**) (B(AF) \ £), assuming
(fr+ Axr) ) (§2.7)), the “measure” ( of (G¥)ren = (graph(f¥))ren

‘| must increase at a rate linear or superhnear to that of (G**)veN = (graph(f¥*))ven

(m

(3) E[f?] is unique and finite (§2.2))

(4) Forsome A% € Band [} € A satisfying , and , when f is unbounded (i.e, skip
when f is bounded), for all s € N and for any set B/ C B(R"™), where A*** E B’ and for
any set &' C ‘B(A***) where * »—> *xk, 7 > 8, B B, and B — A in (1)), (2) and (3),
s.t.~O(E[ff] = E[f*]) (§22] §4.1), when f7** € %' 5at15ﬁes @, @ and 1

e If the absolute valueis | - | and the (n + 1)-th coordinate of C' (§4.3)) is @41, |E[f7] —
Tnst] < [B[f2] (£2)

e Ifr € N, then for all linear s1 : N — N, where s = s1(r) and the Big-O notation is O,
there exists a function K : R — R, where the absolute value is | - | and (§4.1)):

€(C,GT) — E| =O(K(|E(C, GE™) — EI))
=0(K(|€(C, G0 — ED)

such that:
0< lim K(z)/z < 400
Tr——+00

In simpler terms, “the rate of divergence” of |£(C, G) — E| (§4.1)) is less than or equal
to “the rate of divergence” of |£(C, G2**) — E| (§4.1).

(5) When set F C R4 is the set of all f € R4, where a choice function chooses a collection
B C B(R™), where A} € Band % C B(A}) such that f} € % satisfies (1), (), (3) and (4),
then F'should be:

(a) aprevalent ( subset of R4
(b) Ifnot (a]), then neither a prevalent (§2.3)) nor shy (§2.3) subset of R

(6) Out of all choice functions that satisfy , (12), , and (5]), we choose the one with the
simplest form, meaning for each choice function fully expanded, we take the one with the
fewest variables/numbers?

Question 2 How do we improve so the answer satisfies §3.2/and E[f;] satisfies

5. APPENDIX

5.1. Actual Rate of Expansion of (G}) w.r.t a reference point C. Suppose:

(1) (G¥)ren is asequence of the graph of each f* (§4.1)
(2) C'is areference point in R"*?
(3) Q,R e R
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(4) @=(q1, " qnt1) and R = (r1, -+, rp41), where:
Q—R:(Q1—7”17"';Qn+1—7”n+1)

) QI =/ai ++ - +anand [|R|| =\ /ri + -+ 1744
) C=Gr={C—y:yeG}
)
)

dimpy (-) be the Hausdorff dimension

For any r € N, take the (n + 1)-dimensional Euclidean distance between a reference point C' € R"*! and each
point in G}
g(C,Gr) ={lIC —yll :y € G7}
then average G(C, G?):
1 . *
*\\ L. dimy (C—-G7)
Avg(G(C,G)) = HImn (=G (C — Gr) /C_G*‘ (21, Tpgr)|| dH

where the actual rate of expansion of (G}),cn is:

£(C,G7) = Avg(G(C, Gryy)) — Ave(G(C, GY))

If £(C, G7) is undefined, replace the Hausdorff measure #4m1(C—G7) with the generalized Hausdorff measure
%04 1] p.26-33]

5.2. Defining the “Measure”.

5.2.1. Preliminaries. We define the “measure” of (G}),en, in §5.2.2 which is the sequence of the graph of each
£ (§4.1)). To understand this “measure”, continue reading.

(1) Forevery r € N, “over-cover” G with minimal, pairwise disjoint sets of equal HAima(G) measure.
(We denote the equal measures €, where the former sentence is defined C(e, G}, w): i.e,,w € Qg
enumerates all collections of these sets covering G:. In case this step is unclear, see @ Moreover,
when there exists ar € N, where H4™1(%2) (G#) = 0, replace the Hausdorff measure H4™1(¢7) with
the generalized Hausdorff measure . %n.a (% [1, p.26-33].)

(2) For every ¢, r and w, take a sample point from each set in C(g, G, w). The set of these points is
“the sample” which we define S(C(e, G}, w),¥): i.e., ¢ € U, ., enumerates all possible samples of
C(e, Gy, w). (If this is unclear, see §6.2])

(3) Foreverye, r,wand v,

(a) Take a “pathway” of line segments: we start with a line segment from arbitrary point z of
S(C(e, Gy, w), 1) to the sample point with the smallest (n + 1)-dimensional Euclidean distance to
Zg (i-e., when more than one sample point has the smallest (n + 1)-dimensional Euclidean distance
to xg, take either of those points). Next, repeat this process until the “pathway” intersects with
every sample point once. (In case this is unclear, see §6.3.1])

(b) Take the set of the length of all segments in (a]), except for lengths that are outliers (i.e., for any
constant C' > 0, the outliers are more than C times the interquartile range of the length of all line
segments as r — oo or € — 0). Define this £(zo, S(C(e, G}, w),v)). (If this is unclear, see §6.3.2])

(¢) Multiply remaining lengths in the pathway by a constant so they add up to one (i.e., a probability
distribution). This will be denoted P(L(xq, S(C(e, G¥,w),))). (In case this is unclear, see §6.3.3))

(d) Take the shannon entropy of step (). We define this:

E(P(C(l’o,S(C(E,G:,w),’(/})))) = Z _‘rlog23j
TEP(L(w0,8(C(e,G,w) )
which will be shortened to E(L(z, S(C(e, G}, w),1))). (If this is unclear, see §6.3.4])

(e) Maximize the entropy w.r.t all ”pathways”. This we will denote:

E(L(S(C(e, GF,w), ) = sup E(L(z0, 8(C(e, GF,w), 1))
20€S(C(e,Gx,w),Y)

(In case this is unclear, see §6.3.5])
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(4) Therefore, the maximum entropy, using (1) and (2]) is:

Emax(e,7) = sup  sup E(L(S(C(g,GT,w),v)))
wWEQe » YETV, 1

5.2.2. What Am I “Measuring”? We define (G}),cn and (G5*),en, which respectively are the sequences of the

q

graph for each of the bounded functions f and f;* (§4.1]). Hence, for constant ¢ and cardinality | - |
(a) Using (2)) and () of section[5.2.1] suppose:

|S(C(87 GL"‘))va)l =
inf {|S(C(e, G3*,w),¥")| v EN, W' € e, ¥ € Ve v, E(L(S(C(e, G5*,w'),9"))) > E(L(S(C(e, G, w), ¥))) }

then (using |S(C(e, Gf,w), v)|) we get:

a(e,mw, ) =I[S(Cle, Gf,w), )|/ [S(C(e, GF,w), ¥))|
(b) Also, using (2) and (Je) of section[5.2.1] suppose:

IS(C(e, GF,w), ¥)| =
sup {|S(C(e, G5, w"), ") 1 v €N, W' € ey, ¥ € Ve w0, E(L(S(C(e, GYF,w"),9))) < E(L(S(C(e, GF,w),¥)) }

then (using |S(C(e, G%,w), ¥)|) we also get

a(e,rw, ) = |S(C(e, GF,w), ¥)|/IS(Ce, G, w), )]
(1) Ifusing @ (e, 7, w,v) and a (¢, r,w, 1)) we have:

1 < limsuplimsup sup sup @a(g,7,w,?),liminfliminf inf inf  al(e,r,w,v¥) < +oo
e=0  r—oo wef . Yev. ., e=0 700 weQe  YETVL r

then what I'm measuring from (Gf),en increases at arate superlinear to that of (G}*)yen.
(2) Ifusingequations@ (e, v,w, ¥)and « (g, v, w, 1) (where, using @ (e, 7, w, ¥) and a (¢, r, w, ¥), we swap r with
v and G} with G3*) we get:

1 <limsuplimsup sup sup @(&,v,w,?),liminfliminf inf inf  a(e,v,w,¥) <400
e=0 vo00 we,, PV, , e=>0  v00 WERe,w YEVe b0

then what I'm measuring from (GF),cn increases at a rate sublinear to that of (G*)en.
(3) If using equations @ (e, r,w, ¥), a (g, 7w, ¥), @ (g,v,w, ), and a (¢, v,w, 1), we both have:

(a) limsuplimsup sup sup a(e,r,w,t)orliminfliminf inf inf  a(e,rw,y)areequaltozero,
e—0 r—00 we. PeEV, ., e—=0 r—=00 wEQe,r YPEV, 1w
one or +0o0o
(b) limsuplimsup sup sup @/(e,v,w,?)orliminfliminf inf inf  «a(e,v,w,1))areequaltozero,
e=0 v00 WEQe , VET, 4w e=0  v—=00 wWEDew YPETV: 0
one or +0o00o

then what I'm measuring from (G¥),cn increases at a rate linear to that of (G3*),en.

6. ILLUSTRATION OF §5.2.1]

6.1. Example of step [I} Suppose
(1) A=R
(2) When defining f : A — R:

1 x <0
flz)=4¢ -1 0<z<05 (2)
05 05<L«x
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Then one example of C(v/2/6,G¥, 1), using step (where GT = ({(, f(z)) : =1 <@ < 1}), o) Is:

{{(w,f(x)):71§z< ﬂﬁ’ﬁ},{u,f(x)): T Ni”}{(z,f(m)): 220 s 3“56’6}

3V2-6 4”‘6},{<z,f<m>>:4ﬂ‘6 5”‘6},{<z,f<z>>:5ﬁ‘6< 6ﬂ‘6} 3)

<
6 =" 6 =" 6 ="

{(r, f(@) :

<z<
6 =" % 6 ="<"% 6 "= ¢

{(aa,fm): LR m‘ﬁ},{u,f(x)): Ro8 8ﬂ—6}7{(m,f($)): 8vZ—6 9\/5—6}}

Note, the length of each partition is v/2/6, where the borders could be approximated as:
{H{lz, f(®): =1 <z < =764}, {(z, f(z)) : —.764 < x < —.528} ,{(=, f(z)) : —.528 < = < —.293}
{(z, f(z)) : =293 <z < —.057}, {(=, f(z)) : —.057 <z < .178} ,{(=z, f(x)) : .17T8 < z < .414} (4)
{(z, f(x)) : 414 <z < .65}, {(z, f(z)) : .65 <z < .886},{(z, f(z)) : .886 < = < 1.121} }

which is illustrated using alternating orange/black lines of equal length covering G7 (i.e., the black vertical lines
are the smallest and largest z-cooridinates of G7).

FIGURE 1. The alternating orange & black lines are the “covers” and the vertical lines are the
boundaries of G7.

-0.5 0 0.5

(Note, the alternating covers in fig. satisfy step (1)) of §5.2.1] because the Hausdorff measure in its dimension
of the covers is /2 /6 and there are 9 covers over-covering G7: i.e.,

Definition 1 (Minimum Covers of Measure ¢ = /2/6 covering G}). We can compute the minimum
covers of C(v/2/6,G%,1), using the formula:

[HAmaGD(G)/(v2/6)]

where [ (G1)/(v2/6)] = [Length([~1,1])/(v2/6)] = [2/(vV2/6)] = [6v/2] = [6(1.4)] = [8 +.4] = 9).
Note there are other examples of C(v/2/6, G%, w) for different w. Here is another case:

FIGURE 2. This is similar to ﬁgure except the start-points of the covers are shifted all the
way to the left.

-0.5 0 0.5
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which can be defined (see eq. [3]for comparison):
{{(x,f(x»: T 6‘8ﬁ},{<w,f(x>>: T 6_7ﬂ},{(w,f(:c)): SV s 6‘6‘/5}

6 - 6 6 - 6 6 6
{(z,f(z» O 6*65‘/5},{@,1‘@)) O 6*§ﬁ},{<z7f<z>> O 6*63‘/5} )
{(z,f(z» O 6’62‘/5},{@,]"(1)) T G’Gﬂ}7{<x,f<z>> LT 1}}

In the case of G}, there are uncountable different covers C(1v/2/6, G, w) which can be used. For instance, when
0<a<(12-9v2)/6 (ie.,w = a+ 1) consider:

{{(a:,f(r)):aflﬁz<a+ﬂG_G},{(z,f(z)):a+\/56_6§z<a+2\/56_6},{(z,f(z)):a+2\/§6_6 §r<o¢+3\/§6_6}

{(z,f(z»:wwi’fj 5z<a+4ﬁ’6},{<z,f<z>>:a+”5’6 §z<a+5ﬂ’6},

6 6 6

{(w,f(x)):a+5\/§676 §x<a+6\/5676},{(:c,f(:c)):a+6\/§676 §x<a+7\/§676} (6)

V2 -6 8\/5—6}’{@’}((1)):&4»8\/5—6 9\/5—6}}

<z <a+ <z < a4+
6 6 6 6

{(I»f(l‘))w“r
Whena =0andw = 1, we get ﬁgureand when a = (12 — 9v/2)/6 and w = (18 — 9v/2)/6, we get ﬁgure

6.2. Example of §5.2.1} step . Suppose:
(1) A=R
(2) When defining f : A — R: i.e.,

1 <0
flx)=< -1 0<2<0.5 (7)
05 05<Zzx

(3) (GPren = {(z, f(z)) - —r <z <71}),ep
(4) G ={(z, f(z)): -1 <z <1}
(5) C(v/2/6,G%,1), using eq. and fig. |1}, which is approzimately
{{(z, f(@): =1 <z < —.764} , {(=, f(z)) : —.764 <z < —.528} ,{(z, f(z)) : —.528 < = < —.293}
{(z, f(z)) : —.293 <z < —.057}, {(z, f(z)) : —.057 <z < .178} ,{(=z, f(x)) : .17T8 < x < .414} (8)
{(z, f(x)) : 414 <z < .65}, {(=, f(z)) : .65 < = < .886},{(=, f(z)): .886 < = < 1.121} }

Then, an example of S(C(v/2/6,G%,1),1) is:
{(=.9,1), (=.65,1), (—4,1), (—.2,1), (.1, =1), (.3, —1), (.55, .5), (.75, .5), (1,.5)} 9)

Below, we illustrate the sample: i.e., the set of all blue points in each orange and black line of C(v/2/6,G%,1)
covering G7:

F1cURE 3. The blue points are the “sample points”, the alternative black and orange lines are
the “covers”, and the red lines are the smallest & largest z-coordinate of G7.

05 o

0.5
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Note, there are multiple samples that can be taken, as long as one sample point is taken from each cover in
C(v2/6,G7,1).
6.3. Example of step [3l Suppose
(1) A=R
(2) When defining f : A — R:
1 z <0
flx)=< -1 0<2<0.5 (10)
0.5 05<zx
(3) (GPren = {(z, f(@)) : —r <z <7}), ey
(4) Gf = {(&, (@) i -1 <z <1}
(5) C(v/2/6,G%,1), using eq. and fig. [1} is approx.
{H{lz, f(®): =1 <z < =764}, {(z, f(z)) : —.764 < @ < —.528} ,{(=, f(z)) : —.528 < & < —.293}
{(z, f(z)) : =293 <z < —.057},{(z, f(z)) : —.0567 <z < 178}, {(z, f(x)) : . 178 < z < .414} (11)
{(z, f(z)) : 414 <z < .65}, {(z, f(z)) : .65 <z < .886},{(z, f(z)) : .886 <z < 1.121} }

(6) S(C(v2/6,G%,1),1), using eq. El, is:
{(-.9,1),(-.65,1),(—4,1),(-.2,1),(.1,-1),(.3,-1),(.55,.5), (.75, .5),(1,.5)} (12)
Therefore, consider the following process:
6.3.1. Step[Jd 1S(C(v2/6,G1,1),1) is:
{(-.9,1),(—.65,1),(—4,1),(—.2,1),(.1,-1),(.3,-1),(.55,.5), (.75, .5), (1, .5)} (13)
suppose zg = (—.9, 1). Note, the following;:
(1) @1 = (—.65,1) is the next point in the “pathway” since it’s a point in S(C(v/2/6, G}, 1), 1) with the
smallest 2-d Euclidean distance to x( instead of x.
(2) 29 = (—.4,1)isthethird point sinceit’sapointin S(C(v/2/6,G%, 1), 1) with the smallest 2-d Euclidean
distance to x1 instead of 2y and ;.
(3) w3 = (—.2,1) is the fourth point since it’s a point in S(C(v/2/6,G%,1),1) with the smallest 2-d
Euclidean distance to x5 instead of xg, 1, and 5.
(4) we continue this process, where the “pathway” of S(C(v/2/6,G%,1),1) is:
(—.9,1) = (=.65,1) = (—.4,1) = (—.2,1) = (.55,.5) — (.75,.5) = (1,.5) = (.3,—1) — (.1, —1) (14)

Note 1. If more than one point has the minimum 2-d Euclidean distance from xq, x1, x2, etc. take all
potential pathways: e.g., using the sample in eq. if xg = (—.65,1), then since (—.9,1) and (—.4,1) have
the smallest Fuclidean distance to (—.65,1), take two pathways:

(—.65,1) = (—=.9,1) = (—.4,1) = (—.2,1) = (.55,.5) — (.75,.5) = (1,.5) — (.3,—-1) = (.1,—-1)
and also:
(—=.65,1) =» (—=4,1) = (—=.2,1) = (-.9,1) = (.55,.5) — (.75,.5) = (1,.5) — (.3,-1) = (.1,-1)

6.3.2. Step @a Next, take the length of all line segments in each pathway. In other words, suppose d(P, Q) is the
2-d Euclidean distance between points P, Q € R?. Using the pathway in eq. we want:

{d((—.9,1),(—.65,1)),d((—.65,1),(—.4,1)),d((—.4,1),(—.2,1)),d((—.2,1), (.55, .5)), (15)
d((.55,.5), (.75,.5)),d((.75,.5), (1,.5)),d((1,.5), (.3, —1)),d((-3,—-1), (.1,—-1))}

Whose distances can be approximated as:

{.25,.25,.2,.901389, .2, .25, 1.655295, .2}

Also, we see the outliers are .901389 and 1.655295 (i.e., notice that the outliers are more prominent for e < v/2/6).
Therefore, remove .901389 and 1.655295 from our set of lengths:

{.25,.25,.2,.2, .25, .2}

This is illustrated using:
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FIGURE 4. The black arrows are the “pathways” whose lengths aren’t outliers. The length of

the red arrows in the pathway are outliers.
- \ 8

x0=(--9,1)

Hence, when zg = (—.9, 1), using §5.2.1|step[Fp|& eq. [13] we note:
L((—.9,1),8(C(v2/6,G%,1), 1)) = {.25,.25,.2, .2, .25, .2} (16)

6.3.3. Step[Jd To convert the set of distances in eq. [I6]into a probability distribution, we take:

> r=.25+.25+.2+.2+.25+.2=135 (17)
z€{.25,.25,.2,.2,.25,.2}

Then divide each element in {.25,.25,.2,.2,.25, .2} by 1.35
{.25/(1.35),.25/(1.35),.2/(1.35),.2/(1.35),.25/(1.35),.2/(1.35)}
which gives us the probability distribution:
{5/27,5/27,4/27,4/27,5/27,4/27}

Hence,
P(L((-.9, 1),S(C(\/§/6, G71,1),1))) ={5/27,5/27,4/27,4/27,5/27,4/27} (18)

6.3.4. Step[Jd Take the shannon entropy of eq.
E(P(£((—9,1),5(C(v2/6,G1,1),1)))) =

Z —zxlogy, x = Z —xlogyx =
ace]P’(E((—B,l),S(C(\/ﬁ/ﬁ,G{,l),l))) x€{5/27,5/27,4/27,4/27,5/27,4/27}

— (5/27) logy(5/27) — (5/27) log, (5/27) — (4/27) log, (4/27) — (4/27) log, (4/27) — (5/27) log,(5/27) — (4/27) logs(5/27) =
— (15/27) logy (5/27) — (12/27) logy (4/27) ~ 2.57604

We shorten E(P(£((—.9,1),S(C(v/2/6,G*,1),1)))) to E(L((—.9,1),S(C(v/2/6,G%,1),1))), giving us:

E(L((—.9,1),5(C(V2/6,G%,1),1))) ~ 2.57604 (19)
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6.3.5. Step[Jd Take the entropy, w.r.t all pathways, of the sample:

{(-.9,1),(—.65,1),(—4,1),(-.2,1),(.1,-1),(.3,-1),(.55,.5), (.75, .5),(1,.5)} (20)
In other words, we’ll compute:
E(L(S(C(V2/6,G1,1),1))) = sup E(L(z0,S(C(V2/6,G7,1),1)))

z0€S(C(v2/6,G1,1),1)

We do this by repeating §6.3.1-§6.3.4|for different o € S(C(v/2/6,G%,1),1))) (i.e., in the equation with
multiple values, see note

E(L((—.9,1),S(C(V2/6,G7%,1),1))) ~ 2.57604 (21)
E(L((—.65,1),S(C(V2/6,G%,1),1))) ~ 2.3131,2.377604 (22)
E(L((—.4,1),8(C(V2/6,G%,1),1))) ~ 2.3131 (23)
E(L((—.2,—-1),S(C(V2/6,G7,1),1))) ~ 2.57604 (24)
E(L((—.1,-1),8(C(Vv2/6,G%,1),1))) ~ 1.86094 (25)
E(L((-.3,—-1),S8(C(v/2/6,G*,1),1))) ~ 1.85289 (26)
E(L((.55,.5),S(C(V/2/6,G%,1),1))) ~ 2.08327 (27)
E(L((.75,.5),S(C(V2/6,G%,1),1))) ~ 2.31185 (28)
E(L((1,.5),S(C(V2/6,G},1),1))) ~ 2.2622 (29)

Hence, since the largest value out of eq. is 2.57604:

L(S(C(V2/6,G%,1),1))) = sup E(L(z0,S(C(V2/6,G%,1),1))) ~ 2.57604

20€S(C(V2/6,G1,1),1)
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