
Question 1:

Consider the penalized formulation for solving a quadratic problem with equality constraints
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where H ∈ Rn×n is symmetric, c ∈ Rn, µ > 0, and A ∈ Rm×n with m < n and full row-rank. Let
Z ∈ Rn×(n−m) be a matrix with orthonormal columns whose range is the null space of A. Show
that if ZTHZ is positive definite, then for all sufficiently small µ (1) has a unique solution and that
solution is a strict local minimizer.
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