Question 1:

Consider the penalized formulation for solving a quadratic problem with equality constraints

$$
\begin{equation*}
\min _{x} \frac{1}{2} x^{T} H x+x^{T} c+\frac{1}{2 \mu}\|A x-b\|_{2}^{2}, \tag{1}
\end{equation*}
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric, $c \in \mathbb{R}^{n}, \mu>0$, and $A \in \mathbb{R}^{m \times n}$ with $m<n$ and full row-rank. Let $Z \in \mathbb{R}^{n \times(n-m)}$ be a matrix with orthonormal columns whose range is the null space of A. Show that if $Z^{T} H Z$ is positive definite, then for all sufficiently small μ (1) has a unique solution and that solution is a strict local minimizer.

