1. A charged spherical shell $\nrightarrow 25 / 100$

Let $a, b \in \mathbb{R}$ be such that $b>a>0$, and consider the spheres

$$
\mathbb{S}_{a}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=a^{2}\right\} \quad \wedge \mathbb{S}_{b}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=b^{2}\right\}
$$

Denote by $\mathcal{S}_{a b}$ the spherical shell that lies outside \mathbb{S}_{a}^{2} but inside \mathbb{S}_{b}^{2}. Then $\mathcal{S}_{a b}$ can be parametrised using spherical coordinates, with $R \in[a, b], \theta \in[0,2 \pi)$, and $\varphi \in[0, \pi]$. Denote, for any $P \in \mathcal{S}_{a b}$, the distance from P to the origin by R_{P}, the sphere of radius R_{P} that is centred at the origin by $\mathbb{S}_{R_{P}}^{2}$, and the spherical shell that lies outside \mathbb{S}_{a}^{2} but inside $\mathbb{S}_{R_{P}}^{2}$ by $\mathcal{S}_{a R_{P}}$. See figure 1 .

Figure 1: The intersection of the spheres with the $x z$-plane. The spherical shell $\mathcal{S}_{a R_{P}}$ is coloured red, and the spherical shell $\mathcal{S}_{a b}$ is the gray region together with the red region.

The region $\mathcal{S}_{a b}$ is electrically charged. The charge density is

$$
\begin{aligned}
\rho: \mathcal{S}_{a b} & \longrightarrow \mathbb{R} \\
P & \longmapsto \frac{1}{R_{P}^{2}} .
\end{aligned}
$$

The electric field inside this region is then given by

$$
\begin{aligned}
\mathbf{E}: \mathcal{S}_{a b} & \longrightarrow \mathbb{R}^{3} \\
P & \longmapsto \frac{R_{P}-a}{R_{P}^{2}} \mathbf{R}_{P},
\end{aligned}
$$

where \mathbf{R}_{P} is a unit vector in the outward radial direction at the point P. With

$$
\begin{aligned}
\mathrm{E}_{\text {radial }}:[a, b] & \longrightarrow \mathbb{R} \\
R & \longmapsto \frac{R-a}{R^{2}}
\end{aligned}
$$

the radial component of the electric field, we have $\mathbf{E}(P)=\mathrm{E}_{\text {radial }}\left(R_{P}\right) \mathbf{R}_{P}$ for each $P \in \mathcal{S}_{a b}$.
(A) Show that

$$
\iint_{\mathbb{S}_{R_{P}}^{2}} \mathbf{E} \cdot \mathrm{~d} \boldsymbol{A}=4 \pi\left(R_{P}-a\right)
$$

holds for any $P \in \mathcal{S}_{a b}$, where $\mathrm{d} \boldsymbol{A}=\mathrm{d} A \mathbf{R}_{P}$ for $P \in \mathcal{S}_{a b}$.
(B) Show that

$$
\iiint_{\mathcal{S}_{a R_{P}}} \rho \mathrm{~d} V=4 \pi\left(R_{P}-a\right) .
$$

holds for any $P \in \mathcal{S}_{a b}$.
(C) Show that $\vec{\nabla} \cdot \mathbf{E}=\rho$.
(D) Conclude from the above that

$$
\begin{aligned}
\iint_{\mathbb{S}_{R_{P}}^{2}} \mathbf{E} \cdot \mathrm{~d} \mathbf{A} & =\iiint_{\mathcal{S}_{a R_{P}}} \rho \mathrm{~d} V \\
& =\iiint_{\mathcal{S}_{a R_{P}}}(\vec{\nabla} \cdot E) \mathrm{d} V
\end{aligned}
$$

holds for any $P \in \mathcal{S}_{a b}$. Give an interpretation of this result.

2. Extreme values $\boldsymbol{\triangleleft}_{\text {- }} 25 / 100$

Consider the function

$$
\begin{aligned}
& f: \mathbb{R}^{2} \longrightarrow \mathbb{R} \\
& (x, y) \longmapsto\left(x^{2}+2 y^{2}\right) e^{-x^{2}-y^{2}}
\end{aligned}
$$

(A) Determine the extreme values of f.
(B) Determine the extreme values of f on the circle with radius 2 in \mathbb{R}^{2} that is centred at the origin.

3. Setting things straight $\nless 20 / 100$

The subset D of \mathbb{R}^{2} is the one bounded by the four lines defined by the equations $x y=1, x y=4, y=x$, and $y=2 x$.
(A) Sketch D.
(B) Use a suitable coordinate transformation to calculate $\iint_{D} y^{2} \mathrm{~d} A$.
4. Domains of integration $\measuredangle 20 / 100$

Consider the double integral

$$
\int_{0}^{8}\left(\int_{\sqrt[3]{x}}^{2} \frac{1}{y^{4}+1} \mathrm{~d} y\right) \mathrm{d} x
$$

(A) For a suitable subset D of \mathbb{R}^{2}, this integral is equal to

$$
\iint_{D} \frac{1}{y^{4}+1} \mathrm{~d} A
$$

Give a definition of D and sketch it.
(B) The integral as such is quite difficult. Use your definition of D to rewrite the order of integration and calculate the integral.

