2.7 Characterising an Underdamped Response

Underdamped responses are commonly found in control systems and it is, therefore, useful to study them in more detail:

Various parameters are used to characterise an underdamped response. One is the "period of the oscillation" $\it T$. This is inversely related to the frequency $\it \omega$ through the expression

$$T = \frac{2\pi}{\omega} \tag{3.30}$$

The frequency was previously shown to depend on the damping ratio $\,\zeta\,$, so that the above may also be written as

$$T = \frac{2\pi\tau}{\sqrt{1-\zeta^2}}...(3.31)$$

The "rise time" is the time it takes for the output to first cross over its final steady state value

Rise Time =
$$\frac{T}{4}$$

Through equation (3.31), the rise time may also be expressed in terms of the damping ratio as follows:

$$Rise Time = \frac{\pi \tau}{2\sqrt{1-\zeta^2}}$$
 (3.32)

The degree of oscillation is characterised by the decay ratio C/B, which is the ratio of successive "peak overshoots" above the final steady-state value (see previous diagram)

Decay Ratio =
$$\frac{C}{B}$$

Decay Ratio = $\exp(-(\zeta / \tau)T)$
Decay Ratio = $\exp(-2\pi\zeta / \sqrt{1-\zeta^2})$(3.33)

The "overshoot" is the fraction the first peak exceeds the final steady state change, i.e. B/A (see previous diagram)

Overshoot =
$$\frac{B}{A}$$
 = exp $\left(-\left(\frac{\zeta}{\tau}\right)T/2\right)$
Overshoot = exp $\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$(3.34)

The settling time is the time it takes for the response to come within a certain band around the final steady-state value. The output will have settled within 1% of its final value after settling time of approximately

Settling Time =
$$5\frac{\tau}{\zeta}$$
....(3.35)