Reynolds Number (Re) =
$$\frac{\rho \times d \times v}{\eta}$$

where : ρ = fluid density (kg/m³) d = internal pipe diameter (m) v = fluid velocity (m/s) η = fluid dynamic viscosity (Ns/m²)

1. The flow of liquid through a pipe section in a chemical plant has the following fluid parameters.

density of the liquid = 900kg/m³ diameter of the pipe = 0.2m viscosity of the liquid = 0.04Ns/m²

Calculate the Reynolds number for the following velocities, and determine if it is laminar, transitional or turbulent:

- (a) 0.4 m/s
- (b) 0.6 m/s
- (c) 1 m/s
- 2. For the flow rate corresponding to laminar flow, calculate the pressure loss across the pipe using the Hagen Poiseuille equation:

$$h_f = 32 rac{\mu L C_m}{
ho g D^2}$$
 where:
$$h_f = \text{head loss due to friction (m)}$$
 (note: convert to pressure loss by $ho g h$)
$$\mu = \text{dynamic viscosity (Ns/m}^2)$$

$$\rho = \text{density (kg/m}^2)$$

$$L = \text{length pipe (m)}$$

$$C_m = \text{mean velocity (m/s)}$$

$$D = \text{diameter pipe (m)}$$

$$g = \text{gravitational acceleration (m/s}^2)$$

Pipe length = 10m Gravitational acceleration = 9.81m/s² 3. For the flow rate corresponding to turbulent flow, calculate the pressure loss across the pipe using the D'arcy Weishbach equation:

 $h_f = f_D \frac{L}{D} \frac{{C_m}^2}{2g}$ where: $h_f = \text{head loss due to friction (m)}$ (note: convert to pressure loss by $\rho g h$) $f_D = \text{`D'arcy' friction factor}^1$ L = length pipe (m) $C_m = \text{mean velocity (m/s)}$ D = diameter pipe (m) $g = \text{gravitational acceleration (9.81 m/s}^2)$

Pipe length = 10m Gravitational acceleration = 9.81m/s² Friction Factor is taken from Moody Diagram