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Abstract. In this paper, we will extend the expected value of the function w.r.t the uniform probability measure on sets
measurable in the Carathèodory sense to be �nite for a larger class of functions, since the set of all measurable functions
with in�nite or unde�ned expected values may form a prevalent subset of the set of all measurable functions. This means
"almost all" measurable functions have in�nite or unde�ned expected values. Before we de�ne the speci�c problem in
section 2, with a unique solution that allows "more" functions to have �nite expected values, we’ll outline some prelimi-
nary de�nitions. We’ll then de�ne the speci�c problem in section 2 (with a partial solution in section 3) to visualize the
complete solution to the problem. Along theway, wewill ask a series of questions to clarify our understanding of the paper.
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0. Background

I am an undergraduate from Indiana University despite being the age of a grad student. I should have graduated
by now, but my obsession with research prevents me from moving forward. There is a chance that I might have a
learning disability since writing isn’t very easy for me.

As I’ve been in and out of college, I never got the chance to rigorously learn the subjects I’m researching. Most
of what I learned was fromWikipedia, blogs and random research articles. I know little of what I read but learn
what I can from asking questions on math stack exchange.

What I truly want, however; is for someone to take my ideas and publish them.

I warn that the de�nitions may not be rigorous so try to go easy on me. (I recommend using programming such as
Mathematica, Python, JavaScript or Matlab to understand later sections).

1. Preliminaries

Suppose A is a set measurable in the Carathèodory sense [7], such for n ∈ ℕ, A ⊆ ℝn, and function f ∶ A → ℝ.

1.1. Motivation. It seems the set of measurable functions with in�nite or unde�ned expected values (def. 1),
using the uniform measure [18, p.32-37], may be a prevalent subset [15, 11] of the set of all measurable functions,
meaning "almost every" measurable function has in�nite or unde�ned expected values. Furthermore, when
the Lebesgue measure of A, measurable in the Caratheodory sense, has zero or in�nite volume (or unde�ned
measure), there may be multiple, con�icting ways of de�ning a "natural" uniform measure on A.

Below I will attempt to de�ne a question regarding an extension of the expected value (when it’s unde�ned or
in�nite) which allows for �nite values instead.

Note the reason the question will be so long is there are plenty of “meaningless” extensions of the expected
value (e.g. if the expected value is in�nite or unde�ned we can just replace it with zero).

Therefore we must be more speci�c about what is meant by “meaningful” extension but there are some
preliminary de�nitions we must clarify.
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1.2. Preliminary De�nitions.

De�nition 1 (Expected value w.r.t the Uniform Probability Measure). From an answer to a question in
cross validated (a website for statistical questions) [10] , let X ∼ Uniform(A) denote a uniform random variable on
set A ⊆ ℝn and pX denote the probability density function from the radon-nikodym derivative [2, p.419-427] of the
uniform probability measure on Ameasurable in the Carathèodory sense. If I(x ∈ A) denotes the indicator function
on x ∈ A:

I(x ∈ A) = { 1 x ∈ A
0 x ∉ A

then the radon-nikodym derivative of uniform probability measure must have the form I(x ∈ A)∕U′(A). (NoteU′ is
not the derivative ofU in the sense of calculus but rather the denominator of the probability density function derived
from the uniform probability measureU.)

Therefore, by using the law of the unconscious statistician, we should get

E[f(X)] = ∫
ℝn

f(x) ⋅ pX(x) dx (1.2.1)

= ∫
ℝn

f(x) ⋅ I(x ∈ A)
U′(A)

dx

= 1
U′(A)

∫
A

f(x) dx (P1)

= EU′[f(X)]
such the expected value is unde�ned when A does not have a uniform probability distribution or f is not integrable
w.r.t the measureU′.

De�nition 2 (De�ning the pre-structure). Since there’s a chance thatX ∼ Uniform(A) does not exist or f is not
integrable w.r.t toU′, using def. 1 we de�ne a sequence of sets {Fr}r∈ℕ where if:

(a) lim inf
r→∞

Fr =
⋃
r≥1

⋂
q≥r

Fq

(b) lim sup
r→∞

Fr =
⋂
r≥1

⋃
q≥r

Fq

then we have:

(1) lim inf
r→∞

Fr = lim sup
r→∞

Fr = A

(2) For all r ∈ ℕ, Xr ∼ Uniform(Fr) exists (when A is countable in�nite then for every r ∈ ℕ, Fr must be a �nite
set since Xr would be a discrete uniform distribution of Fr; otherwise, when A is uncountable, then Xr is the
normalized Lebesgue measure or some other uniform measure on Fr (e.g. [8]) such for every r ∈ ℕ, either
measure on Fr exists and is �nite.

(3) For all r ∈ ℕ,U′(Fr) is positive and �nite such thatU′ is intrinsic. (For countably in�nite A,U′ would be the
counting measure whereU′(Fr) is positive and �nite since Fr is �nite. For uncountable A,U′ would either be
the Lebesgue measure or the radon-nikodym derivative on some other uniform measure on Fr (e.g. [8]), where
either of the measures on Fr are positive and �nite.)

where {Fr}r∈ℕ is a pre-structure of A, since for every r ∈ ℕ the sequence does not equal A, but "converges" to A as r
increases (see (a) & (b) of this de�nition).

https://stats.stackexchange.com/a/602939/193104
https://stats.stackexchange.com/a/602939/193104
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
https://mathoverflow.net/q/235609
https://mathoverflow.net/q/235609
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Example 2.1. Suppose A = ℚ. One pre-structure ofℚ is {Fr}r∈ℕ = {{c∕r! ∶ c ∈ ℤ, −r ⋅ r! ≤ c ≤ −r ⋅ r!}}r∈ℕ since:
(1) lim inf

r→∞
Fr = lim sup

r→∞
Fr = A ⟹

⋃

r≥1

⋂

q≥r
{c∕q! ∶ c ∈ ℤ, −q ⋅ q! ≤ c ≤ −q ⋅ q} =

⋂

r≥1

⋃

q≥r
{c∕q! ∶ c ∈ ℤ, −q ⋅ q! ≤ c ≤ −q ⋅ q} = ℚ

(2) For every r ∈ ℕ, set Fr = {c∕r! ∶ c ∈ ℤ, −r ⋅ r! ≤ c ≤ r ⋅ r!} is �nite, meaning each term of the pre-structure
has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.

(3) For every r ∈ ℕ, Fr is �nite; meaningU′ is the counting measure. Furthermore, sinceU′(Fr) = 2r ⋅ r! + 1 and
for all r ∈ ℕ, 2r ⋅ r! + 1 is positive and �nite, criteria (3) of def. 2 is satis�ed.

Example 2.2. Suppose A = ℚ. Another pre-structure ofℚ is

{Fr}r∈ℕ = {{c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ r, −dr ≤ c ≤ dr}}r∈ℕ
where we note the following:

(1) lim inf
r→∞

Fr = lim sup
r→∞

Fr = A ⟹

⋃

r≥1

⋂

q≥r
{c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ q, −dq ≤ c ≤ dq} =

⋂

r≥1

⋃

q≥r
{c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ q, −dq ≤ c ≤ dq} = ℚ

(2) For every r ∈ ℕ, set Fr = {c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ r, −dr ≤ c ≤ dr} is �nite, meaning each term of the
pre-structure has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.

(3) For every r ∈ ℕ, Fr is �nite; meaning U′ is the counting measure, since (when �(⋅) is the Euler’s totient

function [16, p.239-249]) we have U′(Fr) = |||{c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ r, −dr ≤ c ≤ dr}||| =
r∑

d=1
2d�(d),

and if correct,
r∑

d=1
2d�(d) is greater than zero and positive for all r ∈ ℕ. Therefore, criteria (3) of def. 2 is sat-

is�ed.

There are plenty of pre-structures of ℚ. Infact, there may be countably in�nite many of these pre-structures.

Example 2.3. We need additional examples, whereU′ is not the counting measure. Perhaps one example of {Fr}r∈ℕ
(where A is the Liouville numbers [6]) is:

{Fr}r∈ℕ =
⎧

⎨
⎩

⋂

n∈ℕ∩[1,r]

⋃

q⩾2

⋃

p∈ℤ
((pq −

1
qn ,

p
q +

1
qn ) ⧵ {pq })

⎫

⎬
⎭r∈ℕ

(1.2.2)

Note we can show
lim inf
r→∞

Fr = lim sup
r→∞

Fr = A

However, we must also show for every r ∈ ℕ, there is a uniform measure on Fr. We assume this uniform measure is
the normalized ℎ-Hausdor� measure where ℎ is the (exact) dimension function of Fr [14].

If the ℎ-Hausdor� measure is positive and �nite for every r ∈ ℕ, thenU′ must be the ℎ-Hausdor� measure which,
again, is positive and �nite. Therefore {Fr}r∈ℕ or equation 1.2.2 is a pre-structure.

De�nition 3 (Expected value of Pre-Structure). If {Fr}r∈ℕ is a pre-structure of A (def. 2), then for r ∈ ℕ, if

EU′[f(Xr)] =
1

U′ (Fr)
∫
Fr
f dx (1.2.3)

https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Liouville_number
https://en.wikipedia.org/wiki/Dimension_function#:~:text=In%20mathematics%2C%20the%20notion%20of,of%20s%2Ddimensional%20Hausdorff%20measure.
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we then have that the expected value of the pre-structure could be described as EU′ [f(Xr)]→ E⋆U′[f] (def. 1) where:

∀(� > 0)∃(N ∈ ℕ)∀(r ∈ ℕ)
(
r ≥ N ⇒ ||||EU′[f(Xr)] − E⋆U′[f]

|||| < �
)
⟹ (1.2.4)

∀(� > 0)∃(N ∈ ℕ)∀(r ∈ ℕ) (r ≥ N ⇒
|||||||||

1
U′ (Fr)

∫
Fr
f dx − E⋆U′[f]

|||||||||
< �) (1.2.5)

Example 3.1. Suppose A = ℚ where f ∶ A → ℝ such that:

f(x) = { 1 x ∈ {(2n + 1)∕2m ∶ n ∈ ℤ, m ∈ ℕ}
0 x ∈ {j∕(2k + 1) ∶ j ∈ ℤ, k ∈ ℕ}

Using the pre-structure in example 2.1 or {Fr}r∈ℕ = {{c∕r! ∶ c ∈ ℤ, −r ⋅ r! ≤ c ≤ −r ⋅ r!}}r∈ℕ, we presume (and
prove) E⋆U′[f] using def. 3 is 1.

And using the pre-structure in example 2.2 or
{Fr}r∈ℕ = {{c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ r, −dr ≤ c ≤ dr}}r∈ℕ

we presume (but must prove) E⋆U′[f], using def. 3 is 1∕3.

This shows di�erent pre-structures give di�erent expected values; therefore, wemust choose a unique set of equivelant
pre-structures (def. 8) which gives the same & �nite expected value.

De�nition 4 (Uniform " coverings of each term of the pre-structure). We de�ne the uniform " coverings of
each term of the pre-structure {Fr}r∈ℕ (i.e., Fr) as a group of pair-wise disjoint sets that cover Fr for every r ∈ ℕ, such
the measureU′ of each of the sets that cover Fr have the same value of " ∈ range(U′), where " > inf

(
range(U′)

)
and

the total sum ofU′ of the coverings is minimized. In shorter notation, if
∙ The element t ∈ ℕ
∙ The set T ⊃ ℕ is arbitrary and uncountable.

and setΩ is de�ned as:

Ω =
⎧

⎨
⎩

{1, ⋅ ⋅ ⋅, t} if there are t ways of writing uniform " coverings of Fr
ℕ if there are countably in�nite ways of writing uniform " coverings of Fr
T if there are uncountable ways of writing uniform " coverings of Fr

(1.2.6)

then for every ! ∈ Ω, the set of uniform " coverings is de�ned usingU(�, Fr, !) where ! “enumerates" all possible
uniform " coverings of Fr for every r ∈ ℕ.

Example 4.1. Suppose
(1) A = ℚ ∩ [0, 1]
(2) {Fr}r∈ℕ = {c∕d ∶ c ∈ ℤ, d ∈ ℕ, d ≤ r, 0 ≤ c ≤ d}

Inorder to calculateU(2, F4, 1), note that:
F4 = {0, 1} ∪ {0, 1∕2, 1} ∪ {0, 1∕3, 2∕3, 1} ∪ {0, 1∕4, 2∕4, 3∕4, 1} = {0, 1, 1∕2, 1∕3, 2∕3, 1∕4, 3∕4}

and; since " = 2 andU′ is the counting measure, one example ofU(2, F4, 1) is
{{0, 1} , {1∕2, 1∕3} , {2∕3, 1∕4} , {3∕4, 5∕4}}

NoteU′ (in this case the counting measure) of each set in the uniform " covering is 2, and we’re "over-covering" F4 by
only one element, since we’re minimizing the total sum ofU′ of the coverings.

De�nition 5 (Sample of the uniform " coverings of each term of the pre-structure). The sample of uniform
" coverings of each term of the pre-structure {Fr}r∈ℕ or Fr is the set of points, such for every " ∈ range(U′) and r ∈ ℕ,
we take a point from each pair-wise disjoint set in the uniform " coverings of Fr (def. 4). In shorter notation, if

∙ The element k ∈ ℕ
∙ The setK ⊃ ℕ is arbitrary and uncountable.
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and set Ψ! is de�ned as:

Ψ! =
⎧

⎨
⎩

{1, ⋅ ⋅ ⋅, k} if there are k ways of writing the sample of uniform " coverings of Fr
ℕ if there are countably in�nite ways of writing the sample of uniform " coverings of Fr
K if there are uncountable ways of writing the sample of uniform " coverings of Fr

(1.2.7)

then for every  ∈ Ψ! , the set of all samples of the set of uniform " coverings is de�ned using S(U(�, Fr, !),  ), where
 “enumerates" all possible samples ofU(�, Fr, !).

De�nition 6 (Entropy on the sample of uniform coverings of each term of the pre-structure). Since there
are �nitely many points in the sample of the uniform " coverings of each term of pre-structure {Fr}r∈ℕ (def. 5), we:

(1) Arrange the x-value of the points in the sample of uniform " coverings from least to greatest. This is de�ned as:

Ord(S(U(�, Fr, !),  ))
(2) Take the multi-set of the absolute di�erences between all consecutive pairs of elements in (1). This is de�ned as:

(Ord(S(U(�, Fr, !),  ))
(3) Normalize (2) into a probability distribution, where for multi-set X, we have |X| as the cardinality of all

elements in the multi-set, including repeated ones. This is de�ned as:

ℙ(S(U(�, Fr, !),  )) = {y∕ |||(Ord(S(U(�, Fr, !),  ))||| ∶ y ∈ (Ord(S(U(�, Fr, !),  ))}
(4) Take the entropy of (3), (for further reading, see [12, p.61-95]). This is de�ned as:

E(S(U(�, Fr, !),  )) = −
∑

x∈ℙ(S(U(�,Fr ,!), ))
x log2 x

where (4) is the entropy on the sample of uniform coverings of Fr .

De�nition 7 (Pre-Structure Converging Uniformly to A). For every r ∈ ℕ (using def. 4, 5, and 6) if set A is
�nite:

lim
"→inf (range(U′))

sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

E(S(U(�, Fr, !),  )) ≥ E(Fr)

and if set A is non-�nite:

lim
"→inf (range(U′))

sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

E(S(U(�, Fr, !),  )) = +∞

we say the pre-structure {Fr}r∈ℕ converges uniformly to A (or in shorter notation):

Fr
r∈ℕ
⇉ A (1.2.8)

(Note we wish to de�ne a uniform convergence of a sequence of sets to A since the de�nition is analogous to a uniform
measure.)

De�nition 8 (Equivalent Pre-Structures). The pre-structures {Fr}r∈ℕ and {F′j}j∈ℕ ofA are equivalent if for all
f ∈ ℝA, where from def. 3, EU′[f(Xr)]→ E⋆U′[f] or EU′[f(X′j)]→ E⋆⋆U′ [f] such that:

E⋆U′[f] = E⋆⋆U′ [f]

De�nition9 (Non-EquivalentPre-Structures). The pre-structures {Fr}r∈ℕ and {F′j}j∈ℕ ofA arenon-equivalent
if there exists an f ∈ ℝA, where from def. 3, EU′[f(Xr)]→ E⋆U′[f] or EU′[f(X′j)]→ E⋆⋆U′ [f] where:

E⋆U′[f] ≠ E⋆⋆U′ [f]

De�nition 10 (Pre-Structures converging Sublinearly, Linearly, or Superlinearly toA compared to that
of another Sequence). Suppose pre-structures {Fr}r∈ℕ and {F′j}j∈ℕ are non-equivalent and converge uniformly to
A; and suppose for every " ∈ range(U′), where " > inf (range(U′)) and r ∈ ℕ:

https://en.wikipedia.org/wiki/Entropy_(information_theory)
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(a) From def. 5 and 6, suppose we have:
|||S(U(�, Fr, !),  )||| = (1.2.9)

inf
{
|S(U(�, F′j , !′),  ′)| ∶ j ∈ ℕ, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, Fr, !),  ))

}

then (using 1.2.9) we have

� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (1.2.10)
(b) From def. 5 and 6, suppose we have:

|||S(U(�, Fr, !),  )||| = (1.2.11)

sup
{
|S(U(�, F′j , !′),  ′)| ∶ j ∈ ℕ, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, Fr, !),  ))

}

then (using 1.2.11) we get
� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (1.2.12)

(1) If using equations 1.2.10 and 1.2.12 we have that:
lim

"→inf (range(U′))
sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = 0

then we say {Fr}r∈ℕ converges uniformly to A at a superlinear rate to that of {F′j}j∈ℕ.

(2) If using equations 1.2.10 and 1.2.12 we have that:
0 < lim

"→inf (range(U′))
sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) < +∞

then we say {Fr}r∈ℕ converges uniformly to A at a linear rate to that of {F′j}j∈ℕ.

(3) If using equations 1.2.10 and 1.2.12 we have that:
lim

"→inf (range(U′))
sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈ℕ

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = +∞

we say {Fr}r∈ℕ converges uniformly to A at a sublinear rate to that of {F′j}j∈ℕ.
I assume � and � are always equal but I’m not sure how to prove this.

1.3. Question on Preliminary De�nitions.
(1) Are there “simpler" alternatives to either of the preliminary de�nitions? (Keep this in mind as we continue

reading).

2. Main Question

Does there exist a unique extension (or a method that constructively de�nes a unique extension) of the expected
value of f when the value’s �nite, using the uniform probability measure [18, p.32-37] on sets measurable in the
Carathèodory sense, such we replace f with in�nite or unde�ned expected values with f de�ned on a chosen
pre-structure which depends on A where:

(1) The expected value of f on each term of the pre-structure is �nite

(2) The pre-structure converges uniformly to A

(3) The pre-structure converges uniformly to A at a linear or superlinear rate to that of other non-equivalent
pre-structures of A which satis�es (1) and (2).

(4) The generalized expected value of f on a pre-structure (i.e. an extension of def. 3 to answer the full question)
has a unique & �nite value, such the pre-structure satis�es (1), (2), and (3).

https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
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(5) A choice function is de�ned which chooses a pre-structure from A where the following satis�es (1), (2), (3),
and (4) for the largest possible subset of ℝA.

(6) If there is more than one choice function that satis�es (1), (2), (3), (4) and (5), we choose the choice function
with the “simplest form", meaning for a general pre-structure of A, when each choice function is fully
expanded, we take the choice functionwith the fewest variables/numbers (excluding those with quanti�ers).

How do we answer this question? (See §3.1, §3.2 & §3.4 for a partial answer.)

3. Informal Attempt to Answer Main Question

(I advise using computer programmings such as Mathematica, Python, JavaScript, or Matlab to understand the
de�nitions of the answer below.)

3.1. Generalized Expected Values. If the image of f under A is f[A] ∶= {f(x) ∶ x ∈ A}, such from def. 2 and
7, we take the pre-structure of f[A] where:

Fr
r∈ℕ
⇉ f[A]

and take the pre-image under f of Fr (de�ned as f−1 [Fr] ∶= {x ∈ A ∶ f(x) ∈ Fr}) such that:

f−1 [Fr]
r∈ℕ
⇉ A

However, note the expected value of f−1 [Fr] (def. 3) may be in�nite (e.g. unbounded f). Hence, for every r ∈ ℕ,
we take

{{
Fr,tr

}
tr∈ℕ

}
r∈ℕ

where:

∀(r ∈ ℕ) (Fr,tr
tr∈ℕ
⇉ Fr)

Thus, the generalized expected value or ËU′[f] is:
∀(� > 0)∃(N ∈ ℕ)∀(r ∈ ℕ)∀ (tr ∈ ℕ) (3.1.1)

⎛
⎜
⎝
r ≥ N, tr ≥ N ⇒ 1

U′ (Fr,tr
) ∫

Fr,tr
f dx − ËU′[f] < �

⎞
⎟
⎠

and (similar to def. 2 & 3) if

EU′
[
f
(
Xr,tr

)]
= 1
U′ (Fr,tr

) ∫
Fr,tr

f dx (3.1.2)

we describe the process of the generalized expected value as EU′
[
f
(
Xr,tr

)]
→ ËU′[f].

3.2. Choice Function. Suppose S′(A) is the set of all pre-structures of A which satis�es criteria (1) and (2) of
the main question where the generalized expected value of the pre-structures, as they converge uniformly to A, is
unique and �nite such the pre-structure

{
F′′r

}
r∈ℕ ∈ S′(A) should be a sequence of sets that satis�es criteria (1),

(2), (3) and (4) of the main question where (using the end of §3.1):

EU′
[
f
(
X′′r,tr

)]
→ Ë′′

U′[f] (3.2.1)

and pre-structure {F′j}j∈ℕ is an element of S′(A) such (using the end of §3.1):

EU′ [f (X′j,tj)] → Ë′
U′[f] (3.2.2)

but is not an element of the set of equivelant pre-structures of
{
F′′r

}
r∈ℕ (i.e. def. 8).

Further note from (a), with equation 1.2.9 in def. 10, if we take:
|||S(U(�, F′′r , !),  )||| = (3.2.3)

inf
{
|S(U(�, F′j , !′),  ′)| ∶ j ∈ ℕ, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, F′′r , !),  ))

}
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and from (b), with equation 1.2.11 in def. 10, we take:
|||S(U(�, F′′r , !),  )||| = (3.2.4)

sup
{
|S(U(�, F′j , !′),  ′)| ∶ j ∈ ℕ, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, F′′r , !),  ))

}

Then, using def. 5 with equations 3.2.3 and 3.2.4, if:
sup
!∈Ω

sup
 ∈Ψ!

S(U(�, F′′r , !),  ) = S′(", F′′r ) = S′ (3.2.5)

sup
!∈Ω

sup
 ∈Ψ!

||||S(U(�, F
′′
r , !),  )

|||| =
||||S′(", F

′′
r )

|||| = |S′| (3.2.6)

sup
!∈Ω

sup
 ∈Ψ!

||||S(U(�, F
′′
r , !),  )

|||| =
||||S
′(", F′′r )

|||| =
||||S
′|||| (3.2.7)

where, using absolute value function ||⋅||, we have:
S(r) =

(
sup(F′′r+1) − sup (F′′r )

) (
inf (F′′r ) − inf

(
F′′r+1

)) ||||
||||
(
inf (F′′r ) − inf

(
F′′r+1

) ) (
sup(F′′r+1) − sup (F′′r ) − 1

) ||||
|||| (3.2.8)

such that

T(r) =
(
sup

(
F′′r+1

)
inf (F′′r ) − sup (F′′r ) inf

(
F′′r+1

)) ( (
inf (F′′r ) − inf

(
F′′r+1

))
−

(
sup

(
F′′r+1

)
− sup (F′′r )

)
− 1

)
(3.2.9)

(
inf (F′′r ) − inf

(
F′′r+1

)) (
sup

(
F′′r+1

)
− sup (F′′r )

)

and, using equations 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9 with the nearest integer function [⋅], we want:

K(", F′′r ) = ||||||1 − S(r)||||||

⎛
⎜
⎜
⎜
⎝

|||||||||||||||||

|||||||||||||||||

||||S
′|||| (1 + [

|S′|
(
|S′|+2|S′|

)

(
|S′|+|S′|

)(
|S′|+|S′|+|S′|

)]) (1 + [||||S
′||||∕

||||S
′||||])

(
1 +

[
|S′|∕|S′|

]) (
1 +

[
|S′|∕|S′|

]) − ||||S
′||||

|||||||||||||||||

|||||||||||||||||

+ ||||S
′||||

⎞
⎟
⎟
⎟
⎠

− T(r) (3.2.10)

such, using equation 3.2.10, if set S′′(A) ⊆ S′(A) and P (⋅) is the power-set, then set C(A) is the largest element of:

{S′′(A) ⊆ S′(A) ∶ ∀(�1 > 0)∃(M ∈ ℕ)∀(" ∈ range(U′))∃ (j ∈ ℕ) ∀ (r ∈ ℕ) ∀ ({F′′r } ∈ S′′(A)) (3.2.11)

( inf (range(U′)) < " ≤ M, r ≥ j ⇒ ||||S
′(", F′′r ) − K(", F′′r ) − inf

{Fg}∈S′(A)
(
S′(", Fg) − K(", Fg)

) |||| < �1)} ⊆ P(S′(A))

w.r.t to inclusion, such the choice function is C(A) if the following contains just one element.

Otherwise, for k ∈ ℕ, suppose we say Ck(A) represents the k-th iteration of the choice function of A, e.g.
C3(A) = C(C(C(A))), where the in�nite iteration of C(A) (if it exists) is lim

k→∞
Ck(A) = C∞(A). Therefore,

when taking the following:

C′(A) =
⎧

⎨
⎩

C(A) if C(A) contains one element
Cj(A) if j ∈ ℕ, such for all k ≥ j, Ck(A) contains one element
C∞(A) if it exists, and C∞(A) contains one element

(3.2.12)

we say C′(A) is the choice function and the expected value, using def. 3.2.1, is Ë′′
U′[f].

3.3. Questions on Choice Function.
(1) Suppose we de�ne function f ∶ A → ℝ. What unique pre-structure would C′(A) contain (if it exists) for:

(a) A = ℤ where if
{
F′′r

}
r∈ℕ ∈ C′(ℤ) and f = idℤ, we want

{
F′′r

}
r∈ℕ = {{m ∈ ℤ ∶ −r ≤ m ≤ r}}r∈ℕ

(b) A = ℚwhere if
{
F′′r

}
r∈ℕ ∈ C′(ℚ) and f = idℚ, we want {F′′r }r∈ℕ = {{s∕r! ∶ s ∈ ℤ, −r ⋅ r! ≤ s ≤ r ⋅ r!}}r∈ℕ
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(c) A = ℝ where we’re not sure what
{
F′′r

}
r∈ℕ ∈ C′(ℝ) would be if f = idℝ. What would

{
F′′r

}
r∈ℕ be if

it’s unique?

3.4. Increasing Chances of an Unique and Finite Expected Value. In case C′(A), in equation 3.2.12, does
not exist; if there exists a unique and �nite Ë′′

U′[f] (see §3.1) where:

∀
({
F′′r

}
r∈ℕ ∈ C (A)

) (
Ë′′
U′[f] is unique & �nite

)
(3.4.1)

Then Ë′′
U′[f] is the generalized expected value w.r.t choice function C, which answers criteria (1), (2), (3),

(4), (perhaps (5)) of the question in §2; however, there is still a chance that the equation 3.4.1 fails to give an
unique Ë′′

U′[f]. Hence; if k ∈ ℕ, we take the k-th iteration of the choice function C in 3.2.11, such there exists a
j ∈ ℕ, where for all k ≥ j, if Ë′′

U′[f] is unique and �nite then the following is the generalized expected value
w.r.t �nitely iterated C.

In other words, if the k-th iteration of C is represented as C[k] (where e.g. C3(A) = C(C(C(A)))), we want a
unique and �nite Ë′′

U′[f] where:

∃ (j ∈ ℕ) ∀(k ∈ ℕ)
⎛
⎜
⎜
⎝

k ≥ j ⇒ ∀(
{
F′′r

}
r∈ℕ ∈ C[k] (A) )

(
Ë′′
U′[f] is unique & �nite

) ⎞⎟
⎟
⎠

(3.4.2)

If this still does not give a unique and �nite expected value, we then take the most generalized expected
value w.r.t an in�nitely iterated C where if the in�nite iteration of C is stated as lim

k→∞
C[k](f[A]) = C∞(f[A]),

we then want a unique Ë′′
U′[f] where:

∀(
{
F′′r

}
r∈ℕ ∈ C∞ (A) )

(
Ë′′
U′[f] is unique & �nite

)
(3.4.3)

However, in such cases, Ë′′
U′[f] should only be used for functions where the expected value is in�nite or unde�ned

or forworst-case functions—badly behaved f ∶ A → ℝ (where for n ∈ ℕ, A ⊆ ℝn, and f is a function) de�ned
on in�nite points covering an in�nite expanse of space. For example:

(1) For a worst-case f de�ned on countably in�nite A (e.g. countably in�nite "pseudo-random points" non-
uniformly scattered across the real plane), one may need just one iteration of C (since most function on
countable sets need just one iteration of C for Ë′′

U′[f] to be unique); otherwise, one may use equation 3.4.2
for �nite iterations of C.

(2) For a worst-case f de�ned on uncountable A, we might have to use equation 3.4.3 as averaging such a
function might be nearly impossible. We can imagine this function as an uncountable number of "pseudo-
random" points non-uniformly generated on a subset of the real plane (see §4.1 for a visualization.)

Note, however, that no matter how generalized and “meaningful" the extension of an expected value is, there
will always be an f where the expected value does not exist.

3.5. Questions Regarding The Answer.
(1) Using prevalence and shyness [15, 11], can we say the set of f where either equations 3.4.1, 3.4.2 and 3.4.3

have an unique and �nite Ë′′
U′[f] which forms either a prevalent or neither prevalent nor shy subset of

ℝA? (If the subset is prevalent, this implies either one of the generalized expected values can be unique and
�nite for a “large" subset of ℝA; however, if the subset is neither prevalent nor shy we need more precise
de�nitions of “size" which takes “an exact probability that the expected values are unique & �nite"—some
examples (which are shown in this answer [9]) being:

(a) Fractal Dimension notions

https://en.wikipedia.org/wiki/Prevalent_and_shy_sets
https://math.stackexchange.com/a/4623168/1142990
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(b) Kolmogorov Entropy
(c) Baire Category and Porosity

(2) There may be a total of 120 variables in the choice function C (excluding quanti�ers). Is there a choice
function (ignoring quanti�ers) which answers criteria (1), (2), (3) & (4) of the main question in §2 for a
"larger" subset of ℝA? (This might be impossible to answer since such a solution cannot be shown with
prevalence or shyness [15, 11])—therefore, we need a more precise version of “size" with some examples,
again, shown in [9].

(3) If question (2) is correct, what is the choice function C using either equations 3.4.1, 3.4.2 and 3.4.3 fully
answers the question in §2?

(4) Can either equations 3.4.1, 3.4.2 and 3.4.3 (when A is the set of all Liouville numbers [6] and f = idA) give
a �nite value? What would the value be?

(5) Similar to how de�nition 11 in §4 approximates the expected value in de�nition 1, how do approximate
equations 3.4.1, 3.4.2 and 3.4.3?

(6) Can programming be used to estimate equations 3.4.1, 3.4.2 and 3.4.3 respectively (if an unique/�nite result
of either of the expected values exist)?

3.6. Applications.
(1) In Quanta magazine [3], Wood writes on Feynman Path Integrals: “No known mathematical procedure

canmeaningfully average[1] an in�nite number of objects covering an in�nite expanse of space in general.
The path integral is more of a physics philosophy than an exact mathematical recipe."—despite Wood’s
statement, mathematicians Bottazzi E. and Eskew M. [5] found a constructive solution to the statement
using integrals de�ned on �lters over families of �nite sets; however, the solution was not unique as one
has to choose a value in a partially ordered ring of in�nite and in�nitesimal elements.

(a) Perhaps, if Botazzi’s and Eskew’s Filter integral [5] is not enough to solve Wood’s statement, could
we replace the path integral with expected values from equations 3.4.1, 3.4.2 and 3.4.3 respectively
(or a complete solution to section 2)? (See, again, §4.1 for a visualization of Wood’s statement.)

(2) As stated in §1.1, “when the Lebesgue measure of A, measurable in the Caratheodory sense, has zero or
in�nite volume (or unde�ned measure), there may be multiple, con�icting ways of de�ning a "natural"
uniformmeasure onA." This is an example of Bertand’s Paradox which shows, "the principle of indi�erence
(that allows equal probability among all possible outcomes when no other information is given) may not
produce de�nite, well-de�ned results for probabilities if applied uncritically, when the domain of possibili-
ties is in�nite [17].

Using §3.1, perhaps if we take (from def. 3.2.12):

C′(A) =
⎧

⎨
⎩

C(A) if C(A) contains one element
Cj(A) if j ∈ ℕ, such for all k ≥ j, Ck(A) contains one element
C∞(A) if it exists, and C∞(A) contains one element

then for
{
F′′r

}
r∈ℕ ∈ C′(A), if we want S ⊆ A and we get the following:

[1]Meaningful Average—The average answers the main question in §2

https://en.wikipedia.org/wiki/Prevalent_and_shy_sets
https://en.wikipedia.org/wiki/Liouville_number
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Principle_of_indifference
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∃(U(S) ∈ ℝ)∀(� > 0)∃(N ∈ ℕ)∀(r ∈ ℕ) (r ≥ N ⟹
||||||||
U′(S ∩ F′′r )
U′(F′′r )

−U(S)
||||||||
< �) (3.6.1)

ThenU(S)might serve as a solution to Bertand’s Paradox (unless there’s a better C′(A) and
{
F′′r

}
r∈ℕ ∈

C′(A) which completely solves the main question in §2).

Now consider the following:

(a) How do we applyU(S) (or a better solution) to the usual example which demonstrates the Bertand’s
Paradox as follows: for an equilateral triangle (inscribed in a circle), suppose a chord of the circle
is chosen at random—what is the probability that the chord is longer than a side of the triangle?
[4] (According to Bertand’s Paradox there are three arguments which correctly use the principle of
indi�erence yet give di�erent solutions to this problem [4]:

(i) The “random endpoints" method: Choose two random points on the circumference of the
circle and draw the chord joining them. To calculate the probability in question imagine the
triangle rotated so its vertex coincides with one of the chord endpoints. Observe that if the
other chord endpoint lies on the arc between the endpoints of the triangle side opposite the
�rst point, the chord is longer than a side of the triangle. The length of the arc is one-third of
the circumference of the circle, therefore the probability that a random chord is longer than a
side of the inscribed triangle is 1∕3.

(ii) The "random radial point" method: Choose a radius of the circle, choose a point on the radius,
and construct the chord through this point and perpendicular to the radius. To calculate the
probability in question imagine the triangle rotated so a side is perpendicular to the radius.
The chord is longer than a side of the triangle if the chosen point is nearer the center of
the circle than the point where the side of the triangle intersects the radius. The side of the
triangle bisects the radius, therefore the probability a random chord is longer than a side of
the inscribed triangle is 1∕2.

(iii) The "random midpoint" method: Choose a point anywhere within the circle and construct a
chord with the chosen point as its midpoint. The chord is longer than a side of the inscribed
triangle if the chosen point falls within a concentric circle of radius 1∕2 the radius of the
larger circle. The area of the smaller circle is one-fourth the area of the larger circle, therefore
the probability a random chord is longer than a side of the inscribed triangle is 1∕4.

4. Glossary

4.1. Example of Case (2) of Worst Case Functions. (If the explanation below is di�cult to understand, see
this visualization to accompany the explanation [1], where when changing the sliders each time, wait a couple of
seconds for the graph to load.)

We wish to create a function that appears to be a “pseudo-randomly" distributed but has in�nite points that are
non-uniform (i.e. does not have complete spatial randomness [13]) in the sub-space of ℝ2, where the expected
value or integral of the function w.r.t uniform probability measure [18][ p.32-37] is non-obvious (i.e. not the center
of the space the function covers nor the area of that space).

Suppose for real numbers x1, x2, y1 and y2, we generate an uncountable number of "nearly pseudo-random"
points that are non-uniform in the subspace [x1, x2] × [y1, y2] ⊆ ℝ2.

We therefore de�ne the function as f ∶ [x1, x2]→ [y1, y2].

https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://www.wolframcloud.com/obj/4e78f594-1578-402a-a163-ebb16319ada2
https://www.wolframcloud.com/obj/4e78f594-1578-402a-a163-ebb16319ada2
https://en.wikipedia.org/wiki/Complete_spatial_randomness
https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
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Now suppose b ∈ {2, 3, ⋅ ⋅ ⋅, 10} where the base-b expansion of real numbers, in interval [x1, x2], have in�nite
decimals that approach x from the right side so when x1 = x2 we get f(x1) = f(x2).

Furthermore, for ℕ ∪ {0} = ℕ0, if r ∈ ℕ0 and digitb ∶ ℝ ×ℤ→ {0, 1, ⋅ ⋅ ⋅, b − 1} is a function where digitb(x, r)
takes the digit in the br-th decimal fraction of the base-b expansion of x (e.g. digit10(1.789, 2) = 8), then

{
gr′

}
r∈ℕ0

is a sequence of functions such that gr′ ∶ ℕ0 → ℕ0 is de�ned to be:

g′r(x) = [10b sin(rx) + 10
b ] (4.1.1)

then for some large k ∈ ℕ and x1, x2 ∈ ℝ, the intermediate function (before f) or f1 ∶ [x1, x2]→ ℝ is de�ned to be

f1(x) =
|||||||||||

⎛
⎜
⎝

∞∑

r=0
g′r+1

⎛
⎜
⎝

r+k∑

p=r
digitb(x, p)

⎞
⎟
⎠

/
br

⎞
⎟
⎠
− 10

|||||||||||
= (4.1.2)

|||||||||||

⎛
⎜
⎝

⎛
⎜
⎝

∞∑

r=0

⎡
⎢
⎣

10
b sin

⎛
⎜
⎝
(r + 1)

⎛
⎜
⎝

r+k∑

p=r
digitb(x, p)

⎞
⎟
⎠

⎞
⎟
⎠
+ 10

b
⎤
⎥
⎦

⎞
⎟
⎠

/
br

⎞
⎟
⎠
− 10

|||||||||||
where the points in f1 are "almost pseudo-randomly" and non-uniformly distributed on [x1, x2] × [0, 10]. What
we did was convert every digit of the base-b expansion of x to a pseudo-random number that is non-equally likely
to be an integer, including and in-between, 0 and (10 ⋅ 10s)∕b. Furthermore, we also make the function appear
truly “pseudo-random", by adding the br-th decimal fraction with the next k decimal fractions; however, we
want to control the end-points of [0, 10s+1] such if y1, y2 ∈ ℝ, we convert [x1, x2] × [0, 10] to [x1, x2] × [y1, y2] by
manipulating equation 4.1.2 to get:

f(x) =y2 −
y2 − y1
10 f1(x) (4.1.3)

y2 − (y2 − y1
10 )

|||||||||||

⎛
⎜
⎝

⎛
⎜
⎝

∞∑

r=0

⎡
⎢
⎣

10
b sin

⎛
⎜
⎝
(r + 1)

⎛
⎜
⎝

r+k∑

p=r
digitb(x, p)

⎞
⎟
⎠

⎞
⎟
⎠
+ 10

b
⎤
⎥
⎦

⎞
⎟
⎠

/
br

⎞
⎟
⎠
− 10

|||||||||||
such the larger k is, the more pseudo-random the distribution of points in f in the space [x1, x2] × [y1, y2], but
unlike most distributions of such points, f is uncountable.

4.2. Question Regarding Section 4.1. Let us give a speci�c example, suppose for the function in equation 4.1.3
of §4.1, we have:

∙ b = 3
∙ [x1, x2] × [y1, y2] = [0, 1] × [0, 1]
∙ k = 100

(one can try simpler parameters); what is the expected value using either equations 3.4.2 and 3.4.3 (or a more
complete solution to section 2) if the answer is �nite and unique?

What about for f in general (i.e. in terms of b, x1, x2, y1, y2 and k)?

(Note if x1, y1 → −∞ and x2, y2 → ∞, then the function is an explicit example of the function that Wood[2]

describes in Quanta Magazine)

[2]Wood wrote on Feynman Path Integrals: “No known mathematical procedure canmeaningfully average [1] an in�nite number of objects
covering an in�nite expanse of space in general."
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4.3. Approximating the Expected Value.

De�nition 11 (Approximating the Expected Value). In practice, the computation of this expected value may be
complicated if the set A is complicated. If analytic integration does not give a closed-form solution then a general and
relatively simple way to compute the expected value (up to high accuracy) is with importance sampling. To do this, we
produce valuesX1,X2, ...,XM ∼ IID g for some density function g with supportA ⊆ support(g) ⊆ ℝn (hopefully with
support fairly close to A) and we use the estimator:

�̂M ≡
∑M

i=1 I(Xi ∈ A) ⋅ f(Xi)∕g(Xi)
∑M

i=1 I(Xi ∈ A)∕g(Xi)
(4.3.1)

From the law of large numbers, we can establish that E[f(X)] = limM→∞ �̂M so if we takeM to be large then we
should get a reasonably good computation of the expected value of interest.

Note importance sampling requires three things:

(1) We need to know when point x is in set A or not
(2) We need to be able to generate points from a density g that is on a support that covers A but is not too much

bigger than A
(3) We have to be able to compute f(x) and g(x) for each point x ∈ A
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