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 384 MATHEMATICS MAGAZINE

 Fair play and an easier trick This trick is somewhat surprising because it seems to
 involve what we will refer to as "fair play." That is, what appears to one person to be
 mixing cards is actually preserving all of the properties that a second person cares
 about. Hence the spectator feels that the process is fair, which makes the outcome
 surpiising. Another simple trick that illustrates this is one of the first card tricks that
 any child learns.

 The magician has a spectator choose a card, memorize it, and return it to the top
 of the deck. He then allows the spectator to cut the cards as many time as she
 would like. The magician spreads the cards face up and announces the chosen
 card.

 This works because under the action of cutting the cards, the adjacency of pairs of

 cards is invariant. Thus, by remembering the name of the bottom card on the deck
 (which is secretly glimpsed wlhile the spectator is looking at her own card), the
 magician can spot the chosen card as the one in front of the secret card in the face-up
 spread.

 The group in this case is the subgroup H of S52 generated by the cyclic-shift
 permutation

 o= (1 2 3 4 ... 51 52)

 and the invariant is the set A of adjacent pairs of cards in the deck (where the top and
 bottom cards are considered an adjacent pair). It is clear that A is not changed by any
 action in H, so since H appears to the spectator to be mixing the cards but the
 invariant set A can be used to find a chosen card, this is an effective magic trick.

 Analysis of the original problem We next address how to represent the state of
 the cards for the original trick in this paper. We have a strange sort of permutation
 where each value has an orientation (face-up versus face-down) as well as a position in
 the deck. We will represent such a permutation as a "colored" permutation of
 1,2,3,4 with the convention that underlined type represents "face down" for the
 cards. A typical set of decisions in the trick might go as follows, where the deck starts
 off face up with a heart (4) at the bottom, then a club (3), then a diamond (2), and
 then a spade (1).

 The original deck is represented as 1,2,3,4
 (i) Turning the spade (the uppermost card) face down gives us 1, 2, 3,4
 (ii) Cutting two cards from the top to the bottom gives us 3, 4,1,2
 (iii) Turning the top two cards over as one yields 4, 3, 1,2
 (iv) Cutting three cards from the top to the bottom makes this 2, 4, 3, 1
 (v) Turning the top two cards over as one again gives us 4, 2 3, 1
 (vi) Turning the entire stack over yields 1,3,2, 4
 (vii) Turning the topmost card over, 1, 3, 2,4

 then the top two cards over as one, 3, 1, 2, 4
 and then the top three cards over as one respectively yields finally 2, 1, 3,4

 Note that in the final arrangement Card 3 (the club) is turned up while the other
 three cards are turned down, so the trick does work with these choices ... as if there
 were ever any doubt. This trick is interesting mathematically in that it really seems
 that every permutation of the cards could be achieved using the steps for mixing, but
 clearly this is not so. There are 24 4! = 384 ways we can arrange 1,2,3,4 and
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 underline each number or not, but the decisions at Step 3 in the trick will prevent
 many of these from happening. So the first question is to characterize the outcomes
 we can and cannot get.

 Formally we could represent the permutations that act on the cards as the subgroup
 H of S8 (thinking of the four cards' front-and-back pairs as eiglht objects) generated by
 the permutations that constitute the three operations in the trick that require
 decisions, namely cutting one card, turning two cards as one, and flipping over the

 entire packet. These will be denoted K, X, and 4 respectively and are given below.
 We will continue to use our more visual notation of letters in two styles to express
 these mappings. Here the underline merely means that the particular card was
 reversed from its original orientation.

 K= ABCD >BCDA r= ABCD -> BACD 4)=ABCD ->DCBA

 The first proposition states in essence that at the end of each step in the trick there

 will always be 1 or 3 face down cards. Let CO denote the set of arrangements of the
 cards that have 1 or 3 face down cards. Notice that the first step of the trick causes the

 packet to be in CO. With four cards in hand it is easy to check that each of the three
 mappings generating H leaves CO fixed. That is,

 PROPOSITION 1. CO is invariant under the action of H.

 The next observation is that, in the end, it does not matter wlhich cards are faced up
 or down, just that the club (3) is faced differently than the others. It does not require
 a lot of experimentation to realize that sometimes the club is the only card faced down
 and sometimes it is the only card faced up. Hence, we change our representation to
 only underline the card (singular by the preceding proposition) that is faced differ-
 ently in the deck, and the above process looks like this. The deck starts off face up
 with a heart (4) at the bottom, then a club (3), then a diamond (2), and then a
 spade (1).

 The original deck is represented as 1,2,3,4

 (i) Turning the uppermost card face down gives us 1, 2, 3, 4
 (ii) Cutting two cards gives us 3, 4, 1, 2
 (iii) Turning the top two cards over as one yields 4, 3, 1, 2
 (iv) Cutting three of cards makes this 2_ 4, 3, 1
 (v) Turning the top two cards over as one again gives us 4, 2, 3, 1
 (vi) Turning tlhe entire stack over yields 1, 3, 2, 4
 (vii) Turning the topmost card over,

 then the top two cards over as one,
 and then the top three cards over as one yields finally 2, 1, 3, 4

 Using this representation, we now realize that there are 4 4!= 96 outcomes,
 although we can still never generate this many of them with the decisions that the
 spectator is allowed to make. This representation also allows us to make clear the next
 proposition regarding invariance. Let C1 denote the arrangements of the packet of
 cards so that the number 3 card is two cards away from the wrong-way (underlined)
 card.

 PROPOSITION 2. C1 is invariant under the action of H.

 Proof. A packet of cards p in C1 must originally look like one of the following,
 where here an underlined letter indicates a card reversed from the rest of the packet:

 3, A,B,C C,3, A,B B,C,3, A A,B,C,3
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 The following table shows what happens to each of the mappings K, X, and 4 act
 on a packet p.

 p K(p) r(p) 4(p)

 3, A, B, C A,B,C,3 A, 3, B, C C, B, A, 3
 C,3, A,B 3, A,B,C 3,C,A, B B, A,3,C
 B,C,3, A C,3, A,B C, B,3, A A,3,C,B
 A, B, C, 3 B, C, 3, A B, A, C, 3 3, C, B, A

 In every case, the property that defines C1 is preserved.
 The last step in the tlick is to turn over the topmost card, then the top two cards (as

 one), and then the top three cards (as one). To represent this action we will use the
 notation p-> to express the execution of each of the three steps. We will use an
 asterisk to denote that the card has changed its orientation. This final operation on the
 entire packet is then represented

 ABCD A*BCD

 B*ACD

 C C*A*BD

 PROPOSITION 3. If the packet starts with the club two places away from the
 wrong-way card, then the club will be the wrong-way card after the final operation.

 Proof. Since the original packet starts off with the club two away from the
 wrong-way card, then we need to consider just the cases where (1) A or C is the club,
 or (2) B or D is the club. In case (1), the operations above will reverse both the club
 and the wrong-way card resulting in the club being the wrong-way card. In case (2),
 the operations will reverse only the two cards that are neither the club nor the
 wrong-way card resulting in the club being the wrong-way card.

 A solitaire game Here is a simple game of solitaire that can be played with a deck
 of cards in your hands-we used to play a version of this game on car trips since it
 does not require a table top. It is equivalent to the game "Even Up," which was
 recently analyzed in [1]. The deck is held face up and fanned through with the player
 removing pairs of cards of the same color whenever they occur adjacent in the deck.
 Of course, the removal of adjacent pairs may create other adjacent pairs which will
 also have to be removed. The game ends when there are no more adjacent same-
 colored pairs to remove. Winning the game means having no cards left at the end.
 This can be turned into a magic trick as follows:

 The magician calls upon two spectators to each take half the deck of cards and
 shuffle them independently. They then merge their stacks (alternatively dealing
 the cards into a single stack) and play the solitaire game. To the amazement of
 everyone, they find they have won.

 The only real trick is that the magician really does split the deck in half, meaning
 that not only does each spectator get 26 cards but also each spectator gets 13 red
 cards and 13 black cards. If each spectator has 13 red cards and 13 black cards, then
 they can shuffle their respective halves until they are blue in the face and wlhen they
 merge them, the solitaire game will be guaranteed to be a winner.

 To see wlly this is true, imagine one spectator's cards came from a blue-backed
 deck wllile tlle otller's cards came from a green-backed deck. The final deck will
 alternate colors of their backs even though the faces of the cards are fairly shuffled.
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 Let us decide that the green-backed cards assume the even positions wlhile the
 blue-backed cards are in the odd positions. As the solitaire game is played, cards are
 removed from the deck in adjacent pairs wllich share the same face-color. Hence at
 any point in the game, (i) the number of blue-backed red cards is equal to the number
 of green-backed red cards, (ii) the number of blue-backed black cards is equal to the
 number of green-backed black cards, and (iii) the blue-backed and green-backed
 cards alternate. Given these three properties that remain invariant as the game is
 played, it is impossible that the game should ever end in a loss. This is true because a
 losing final position must consist of cards alternating in face colors, and property (iii)
 then dictates that the red cards and black cards should have different back colors
 contrary to properties (i) and (ii).

 In terms of invariants under group actions, the permutation group H at work here
 is the (large!) subgroup of S52 generated by permutations that shuffle the odd
 positions among themselves and the even positions among themselves. Letting C
 denote the decks of cards that will lead to a solitaire win, we can state the conclusion
 of the previous discussioii as follows.

 PROPOSITION 4. C is invariant under the action of H.

 The reason that this establishes that the trick will work is that the obvious winning

 arrangement po which has all red cards in the top half of the deck and all black cards
 in the bottom half of the deck is in C. As a computational aside, this analysis also tells
 us that the probability of winning this solitaire game with a fairly shuffled deck of
 cards is simply the probability that the deck is in an order obtainable as in the magic
 trick. This probability is

 ( 2 ,26,

 13 0.218 .
 (526 26

 Unfortunately, this probability is a bit high for this trick to be really amazing since
 people familiar with the game could decide that the magician was just lucky. It is the
 sort of trick that would be more effective if done with several pairs of spectators
 simultaneously.

 Conclusions Many magic tricks, particularly those using cards or those involving
 mentalism, use a set of procedures to make the spectator feel he is making free
 choices, when in reality the results of these choices are all equivalent for the
 magician's purposes.
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