ANSWER ALL FOUR QUESTIONS

1. Solve the following initial value problem for an inhomogeneous 2nd order ODE:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} t}-4 y=5 e^{t}, \quad y(0)=0, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}(0)=1
$$

2. (New type of ODE) Find the general solution, or at least some solutions, to the ODE

$$
t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}=-y(t) t
$$

Please explain your reasoning in detail. Hint: consider the function $z(t)=y(t) t$. [10 marks]
3. Find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$, and $\frac{\partial^{2} f}{\partial x \partial y}$ for

$$
f=\ln (x+y)+x y^{3}
$$

[10 marks]
4. The position $x(t)$ of a damped oscillating particle of mass m at time t on a spring acted on by an external force $F(t)$ can be represented by the following differential equation:

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+c \frac{\mathrm{~d} x}{\mathrm{~d} t}+k x=F(t)
$$

where c is the damping coefficient and k is the spring constant. Find the general solution for $m=2$ and $c=k=1$ and $F(t)=\sin (t)$.

What is the amplitude and frequency of the motion $x(t)$ as $t \rightarrow \infty$?
[10 marks]

