1. (1 point)	(incorrect)
Evaluate the function at the specified points.	5 (1 point) Lat -
Evaluate the function at the specified points.	5. (1 point) Let $z = \sqrt{2}$
$f(x,y) = y + xy^5, (-5,2), (4,3), (2,2)$	The rate of change i
At (-5,2):	fixed is, and
At (4,3):	The rate of change i
At (2,2):	fixed is
Answer(s) submitted:	Answer(s) submitted:
	(
(incorrect)	(incorrect)
2. (1 point) The function	6. (1 point) Let $f(x, y)$
	$\frac{\partial^2 f}{\partial x \partial y} = $
$f(x,y) = x^2 - y^3$	
has inputs and outputs. Thus it is of the form	$\frac{\partial^3 f}{\partial x \partial y \partial x} = $
NUMBER SERVER SERVE	
$f \colon \mathbf{R}^n \to \mathbf{R}^m$	$\frac{\partial^3 f}{\partial x^2 \partial y} = $
where $n = \underline{\hspace{1cm}}$ and $m = \underline{\hspace{1cm}}$.	Answer(s) submitted:
Answer(s) submitted:	
	•
	(incorrect)
	(incorrect)
(incorrect)	7. (1 point) Conside
3. (1 point) Find the limits, if they exist, or type DNE for any	(h = [2] - t (0, 0)
which do not exist.	f has $\boxed{?}$ at $(0,0)$.
	f has ? at $(0, -4)$.
$\lim_{(x,y)\to(0,0)} \frac{1x^2}{x^2 + y^2}$	f has ? at $(-4\sqrt{3},0)$
$\lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2}$	$f \text{ has } ? \text{ at } (4\sqrt{3}, 0).$
1) Along the x-axis:	f has ? at (0,4).
2) Along the y-axis:	
3) Along the line $y = mx$:	
4) The limit is:	Answer(s) submitted:
Answer(s) submitted:	
	•
	•
	•
(incorrect)	(incorrect)
4. (1 point)	0 (1 s - i - t) Fig. 1 d
Given $f(x, y) = -(6x^6y + 8xy^6)$. Compute:	8. (1 point) Find th
$\frac{\partial^2 f}{\partial x^2} =$	$x^2 + y^2 + 8x - 6y + 1.$ I
$\frac{\partial x^2}{\partial x^2} = \underline{\hspace{1cm}}$	(a,b).
$\frac{\partial^2 f}{\partial x^2} = \underline{\hspace{1cm}}$	Answer (separate b
dy~	Answer(s) submitted:

Answer(s) submitted:

```
incorrect)
5. (1 point) Let z = \sqrt{5x + 5y}. Then:
The rate of change in z at (4,4) as we change x but hold y
d is _____, and
The rate of change in z at (4,4) as we change y but hold x
nswer(s) submitted:
incorrect)
6. (1 point) Let f(x,y) = (2x - y)^7. Then
\frac{\partial^3 f}{\partial x \partial y \partial x} \int =
Answer(s) submitted:
(incorrect)
7. (1 point) Consider the function f(x,y) = x^2y + y^3 - 48y.
as ? at (0,0).
as ? at (0, -4).
as ? at (-4\sqrt{3},0).
nas ? at (4\sqrt{3},0).
nas ? at (0,4).
Answer(s) submitted:
(incorrect)
8. (1 point) Find the critical points of the function f(x,y) =
+y^2+8x-6y+1. List your answers as points in the form
Answer (separate by commas): _
```

(incorrect)

•9. (1 point) Find the parabola of the form $y = ax^2 + b$ which best fits the points (1,0), (4,4), (5,8) by minimizing the sum of squares, S, given by

$$S = (a+b)^{2} + (16a+b-4)^{2} + (25a+b-8)^{2}.$$

$$y = \frac{x^{2} + \dots}{Answer(s) \ submitted:}$$

•

(incorrect)

10. (1 point)

The function f has continuous second derivatives, and a critical point at (6, -1).

Suppose $f_{xx}(6,-1) = 16$, $f_{xy}(6,-1) = 8$, $f_{yy}(6,-1) = 4$. Then the point (6,-1):

- A. cannot be determined
- B. is a local maximum
- C. is a saddle point
- D. is a local minimum
- E. None of the above

Answer(s) submitted:

•

(incorrect)