- 1. With justification, determine the points in $[0, \pi]$ at which $f(x) := e^{2\sin x x}$ attains its maximum and miniumn values.
 - 2. (a) Find the linearisation of $f(x) = \sqrt[3]{x}$ at a = 8.
 - (b) Use this linearisation to approximate $\sqrt[3]{7}$ and $\sqrt[3]{9}$.
 - (c) Using a calculator, show that the difference between the approximate and true values of the quantities in 2(b) is strictly less than 0.004.
 - 3. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for each of the following functions $f: \mathbb{R}^2 \to \mathbb{R}$.
 - (a) $f(x, y) = x^2 e^y$
 - (b) $f(x, y) = xy^2 x \sin y$.
- △ 4. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = 8x^3 - 9x^2 + 6xy + 3y^2 + 11.$$

- (a) Find ∇f .
- (b) Solve $\nabla f = (0,0)$ (hint: there are two critical points).
- (c) Determine the Hessian matrix $H_f(x,y)$ at each point $(x,y) \in \mathbb{R}^2$.
- (d) Use Theorem 5.16 in the notes to classify the critical points of f.
- 5. Find and classify the critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^3 + 3xy^2 - 12x + 6y.$$

6. In this question we use the method of Least Squares to find the line of best fit f(x) = mx + c through the data

$$(5,7),$$
 $(7,10),$ $(10,18)$ and $(11,20).$

- (a) Establish the discrepancies d_1 to d_4 and write the sum of their squares as a function g of m and c.
- (b) Find the line of best fit by solving $\nabla g = 0$. You do not need to verify that your solution is a local minimum of g.
- (c) Using your line of best fit, estimate the location of the data point having *x*-coordinate 15.