(Revision 7)

Assignment 2
Note: This assignment consists of 5 problems of equal weight.
Due: After Unit 9
1. Given an interval z > 0 and the function set
S = {In(z°),In5,41In(z), In(5x)},

construct a linear ODE of lowest order such that each function in .S is one of the set’s solutions on the
interval.

2. Reduce the system of first-order equations given below to a single equation of higher order and solve
that equation. Use the method of undetermined coefficients.

2y(t) — 2/ (t) = 2
z(t) —y'(t) —y(t) =3

3. Given the equation

in standard form (see p. 319 of the textbook), where L is a linear operator of the second order with
fundamental solution set {z, z*}, find the general solution.

4. Use the method of variation of parameters to solve

Int
2(8) + Y (1) + y(t) = e 22—y

t
Y (t) — da(t) = 262
5. (Transient Current)

An RLC series circuit has a voltage source given by £(t) = 20sin(¢) V, an inductor of 3 H, a resistor

1
6 €2, and a capacitor of 3 F. Find the current /(¢) in this circuit for ¢t > 0 if
I1(0) =2, I'(0) = 0.

Find the moment of time when the transient current is equal to zero.
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6.1 Basic Theory of Linear Differential Equations
A linear differential equation of order n is an equation that can be written in the form
(1)
an (@)y™ (@) + an1 (@)y" 1 (2) + - +ao (2)y (2) = b(2),

where ag (z), a1 (), -, a, (x) and b (z) depend only on x, not y. When ay, a-, - . ., a, are all constants, we say equation (110) has constant coefficients;
otherwise it has variable coefficients. If b (.7:) = 0, equation (10) is called homogeneous; otherwise it is nonhomogeneous.

In developing a basic theory, we assume that ag (), a1 (z), ---, @y (z) and b(z) are all continuous on an interval / and ay, (z) 0 on /. Then, on dividing by
ay, (), we can rewrite (1@) in the standard form

@)
¥ () + 1 (@)y" ) (2) + -+ + pa (2)y (2) = g (2),
where the functions p; (z),. .., P, (z) and g (z) are continuous on /.

For a linear higher-order differential equation, the initial value problem always has a unique solution.

Existence and Unigqueness

Theorem 1

Suppose p1 (), ..., P, (x) and g (z) are each continuous on an interval (a, b) that contains the point X,. Then, for any choice of the initial values
Y0, Y1,- -+, Tn—1, there exists a unigue solution y (z) on the whole interval (&, b) to the initial value problem

(3

@
¥ (@) + 21 (@)Y (@) + - +pa (2)y (2) = g (),
@

y(z0) =70, 7' (o) =71.- -+, ¥V (0) = Y1 -

The proof of Theorem 1|2 can be found in Chapter 13.1

tAll references to Chapters 11-13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
Example 1
For the initial value problem
()

z (z — 1)y" — 323" + 6z%y— (cos )y = VT + 5;

y(@o) =1,  yza)=0, 3" (z0) =7,

determine the values of x, and the intervals (a, b) containing x, for which Theorem 10 guarantees the existence of a unique solution on (a, b)



Solution

Putting equation (5 13) in standard form, we find that p; (z) = —3/ (z — 1), pa (z) = 62/ (z — 1), p3 (z) = — (cos z)/ [z (z — 1)], and
g(z) = v + 5/ [x (z — 1)]. Now p; (z) and p3 () are continuous on every interval not containing & = 1, while ps () is continuous on every interval not
containing z = 0 or £ = 1. The function g (z) is not defined for z < —5,2 = 0 and & = 1, but is continuous on (=5, 0), (0, 1) and (1, co). Hence, the
functions py, p2, p=, and g are simultaneously continuous on the intervals (=5, 0), (0, 1), and (1, co). From Theorem 13 it follows that if we choose
zp € (—5, 0), then there exists a unique solution to the initial value problem (512)—(6 12) on the whole interval (—5, 0). Similarly, for zg € (0, 1), there is a
unique solution on (0, 1) and, for 2y € (1, co), a unique solution on (1, c0). ¢

If we let the lefi-hand side of equation (3 |O) define the differential operator L,

]

dy n-1

vy —1
Liy=2Y & Y ypy— (D" D® o)
[Wli= gom TP gy TPy = (DM 41 +---+pa) [yl

then we can express equation (3 |2) in the operator form
(8
L (z) = g(x).
It is essential to keep in mind that L is a linear operator—that is, it satisfies
)
Liyi+ya+--+ym] =Ly| + Llya] + -+ + L{ym],
(10)
Lcy] =Ly (c any constant).
These are familiar properties for the differentiation operator D, from which (93) and (10 |3) follow (see Problem 25 |0).
As a consequence of this linearity, if y, . . ., ¥ are solutions to the homogeneous equation
(1)
Lyl (z) =0,
then any linear combination of these functions, C1y1 + - - - + CpYm, is also a solution, because
L[Cly1+ng2+---+C'mym] =C1-0+C-04+---+Cpr-0=0.
Imagine now that we have found n solutions y., . . ., ¥. to the nth-order linear equation (11 3). Is it true that every solution to (11 |3) can be represented by
(12)

Ciyr + Coya + - - + Cryn

for appropriate choices of the constants C,, . . ., C,? The answer is yes, provided the solutions y, . . ., y. satisfy a certain property that we now derive.
Let ¢ () be a solution to (11 2) on the interval (@, b) and let x, be a fixed number in (a, b). If it is possible to choose the constants Cy, . . ., C, so that
(13)

Ciy (zo) + -+ Cpyn (20) = ¢ (xo),

Ciy'y(zo)  +--+ Cayn(zo) = ¢r(o),

Clyt("71)1 (za) +---+ Coyn™V (o) = 45("71) (za),
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