Assignment 2

Note: This assignment consists of 5 problems of equal weight.

Due: After Unit 9

1. Given an interval x > 0 and the function set

 $S = \{\ln(x^5), \ln 5, 4\ln(x), \ln(5x)\},\$

construct a linear ODE of lowest order such that each function in S is one of the set's solutions on the interval.

2. Reduce the system of first-order equations given below to a single equation of higher order and solve that equation. Use the method of undetermined coefficients.

$$\begin{cases} 2y(t) - x'(t) = t^2\\ x(t) - y'(t) - y(t) = 3 \end{cases}$$

3. Given the equation

$$L[y(x)] = \frac{1}{x}$$

in *standard* form (see p. 319 of the textbook), where L is a linear operator of the second order with fundamental solution set $\{x, x^2\}$, find the general solution.

4. Use the method of variation of parameters to solve

$$\begin{cases} x'(t) + y'(t) + y(t) = \frac{\ln t}{t} e^{-2(t+\ln 2)} - t \\ y'(t) - 4x(t) = 2t^2. \end{cases}$$

5. (Transient Current)

An RLC series circuit has a voltage source given by $E(t) = 20 \sin(t)$ V, an inductor of 3 H, a resistor 6 Ω , and a capacitor of $\frac{1}{3}$ F. Find the current I(t) in this circuit for t > 0 if

$$I(0) = 2, I'(0) = 0.$$

Find the moment of time when the transient current is equal to zero.

6.1 Basic Theory of Linear Differential Equations

A linear differential equation of order n is an equation that can be written in the form

(1)

$$a_{n}(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_{0}(x)y(x) = b(x)$$

where $a_0(x), a_1(x), \dots, a_n(x)$ and b(x) depend only on x, not y. When a_0, a_1, \dots, a_n are all constants, we say equation (1 \square) has constant coefficients; otherwise it has variable coefficients. If $b(x) \equiv 0$, equation (1 \square) is called homogeneous; otherwise it is nonhomogeneous.

In developing a basic theory, we assume that $a_0(x)$, $a_1(x)$, \cdots , $a_n(x)$ and b(x) are all continuous on an interval *I* and $a_n(x) \neq 0$ on *I*. Then, on dividing by $a_n(x)$, we can rewrite (1 \square) in the standard form

(2)

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = g(x),$$

where the functions $p_1(x), \ldots, p_n(x)$ and g(x) are continuous on *I*.

For a linear higher-order differential equation, the initial value problem always has a unique solution.

Existence and Uniqueness

Theorem 1

Suppose $p_1(x), \ldots, p_n(x)$ and g(x) are each continuous on an interval (a, b) that contains the point x_0 . Then, for any choice of the initial values $\gamma_0, \gamma_1, \ldots, \gamma_{n-1}$, there exists a unique solution y(x) on the whole interval (a, b) to the initial value problem (3)

(3)

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = g(x),$$

(4)

$$y\left(x_{0}
ight)=\gamma_{0},\ \gamma^{\prime}\left(x_{0}
ight)=\gamma_{1},\ldots,\ y^{\left(n-1
ight)}\left(x_{0}
ight)=\gamma_{n-1}\ .$$

The proof of Theorem 1 🛄 can be found in Chapter 13.[†]

†All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.

Example 1

For the initial value problem

(5)

$$x(x-1)y'''-3xy''+6x^2y'-(\cos x)y=\sqrt{x+5};$$

(6)

$$y(x_0) = 1,$$
 $y'(x_0) = 0,$ $y''(x_0) = 7,$

determine the values of x_0 and the intervals (a, b) containing x_0 for which **Theorem 1** \square guarantees the existence of a unique solution on (a, b).

Solution

Putting equation (5 \square) in standard form, we find that $p_1(x) = -3/(x-1)$, $p_2(x) = 6x/(x-1)$, $p_3(x) = -(\cos x)/[x(x-1)]$, and $g(x) = \sqrt{x+5}/[x(x-1)]$. Now $p_1(x)$ and $p_2(x)$ are continuous on every interval not containing x = 1, while $p_3(x)$ is continuous on every interval not containing x = 0 or x = 1. The function g(x) is not defined for x < -5, x = 0 and x = 1, but is continuous on (-5, 0), (0, 1) and $(1, \infty)$. Hence, the functions p_1, p_2, p_3 , and g are simultaneously continuous on the intervals (-5, 0), (0, 1), and $(1, \infty)$. From Theorem 1 \square it follows that if we choose $x_0 \in (-5, 0)$, then there exists a unique solution to the initial value problem (5 \square) –(6 \square) on the whole interval (-5, 0). Similarly, for $x_0 \in (0, 1)$, there is a unique solution on (0, 1) and, for $x_0 \in (1, \infty)$, a unique solution on $(1, \infty)$.

If we let the left-hand side of equation (3 []) define the differential operator L,

(7)

$$L[y] := \frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + p_n y = (D^n + p_1 D^{n-1} + \dots + p_n)[y],$$

then we can express equation (3 🛄) in the operator form

(8)

 $L\left[y
ight]\left(x
ight)=g\left(x
ight).$

It is essential to keep in mind that L is a linear operator-that is, it satisfies

(9)

$$L[y_1 + y_2 + \dots + y_m] = L[y_1] + L[y_2] + \dots + L[y_m],$$

(10)

$$L\left[cy
ight] =cL\left[y
ight]$$
 (c any constant).

These are familiar properties for the differentiation operator D, from which (9 😐) and (10 😐) follow (see Problem 25 😐).

As a consequence of this linearity, if y_1, \ldots, y_m are solutions to the *homogeneous* equation

(11)

$L\left[y ight]\left(x ight)=0,$

then any linear combination of these functions, $C_1y_1 + \cdots + C_my_m$, is also a solution, because

$$L[C_1y_1 + C_2y_2 + \dots + C_my_m] = C_1 \cdot 0 + C_2 \cdot 0 + \dots + C_m \cdot 0 = 0$$

Imagine now that we have found n solutions y₁,..., y_n to the nth-order linear equation (11 [2]). Is it true that every solution to (11 [2]) can be represented by

(12)

$C_1y_1 + C_2y_2 + \dots + C_ny_n$

for appropriate choices of the constants C₁,..., C_n? The answer is yes, provided the solutions y₁,..., y_n satisfy a certain property that we now derive.

Let $\phi(x)$ be a solution to (11 😐) on the interval (a, b) and let x_0 be a fixed number in (a, b). If it is possible to choose the constants C_1, \ldots, C_n so that

(13)

$$\begin{array}{lll} C_1y_1\left(x_0\right) & + \dots + C_ny_n\left(x_0\right) & = \phi\left(x_0\right), \\ C_1y'_1\left(x_0\right) & + \dots + C_ny'_n\left(x_0\right) & = \phi\prime(x_0), \\ \vdots & \vdots & \vdots \\ C_1y_t^{(n-1)}_1\left(x_0\right) + \dots + C_ny_n^{(n-1)}\left(x_0\right) = \phi^{(n-1)}\left(x_0\right), \end{array}$$