Assignment 1

Note: This assignment consists of 10 problems of equal weight.

Due: After Unit 6

1. Solve the following initial value problem,

$$
y^{\prime}(x y+y-2 x-2)=\ln (x+1), y(0)=0, \quad x>-1 .
$$

2. Find a special integrating factor and solve

$$
x y y^{\prime}+x+y^{2}=0 .
$$

3. Find an integrating factor and solve

$$
\left(2 x^{2} y+x\right) d y+\left(x y^{2}+y\right) d x=0
$$

4. Solve the following initial value problem,

$$
x d y+\left(y-y^{2} \ln x\right) d x=0, y(1)=\frac{1}{4}
$$

5. Solve

$$
2 x \frac{d y}{d x}-y=y\left[1-\ln ^{2}\left(\frac{y}{x}\right)\right], x>0 .
$$

6. Solve

$$
\frac{d y}{d x}-\cos ^{2}(x-y)=0
$$

7. Solve

$$
\left(y^{\prime}\right)^{2}+(x+2 y) \cos (x+y)=(x+2 y+\cos (x+y)) y^{\prime} .
$$

8. A tank is filled with $V=200 \mathrm{~L}$ of a brine containing $\alpha=.4 \mathrm{~kg}$ of salt A per litre. At moment 0 , input and output valves are opened, and a brine containing another salt B, with concentration $\beta=.2 \mathrm{~kg}$ per litre runs into the tank at a rate $r_{\mathrm{i}}=5 \mathrm{~L} / \mathrm{sec}$. The mix runs out of the tank with rate $r_{\mathrm{o}}=4 \mathrm{~L} / \mathrm{sec}$. The salts do not interact with each other. Determine the ratio k of quantity of salt B to the quantity of salt A when the tank contains $V_{1}=400 \mathrm{~L}$ of the mixture.
9. (Heating)

The temperature $M(t)$ outside a building decreases at a constant rate of $1^{\circ} \mathrm{C}$ per hour. The inside of the building is heated, and there is no other source of cooling. The heater was switched on at time $t=0$, when the temperature inside, $T(t)$, was $17^{\circ} \mathrm{C}$, and the temperature outside was $0^{\circ} \mathrm{C}$. Assume that the heater generates a constant amount $h=50,000 \mathrm{Btu} / \mathrm{hr}$ of heat when it is working, the heat capacity of the building is $\gamma=1 / 5$ degrees per thousand Btu, and the time constant for heat transfer between the outside and the inside of the building is $\tau=2 \mathrm{hr}$. On the basis of Newton's law of cooling,

$$
\frac{d T(t)}{d t}=K(M(t)-T(t))+\gamma h
$$

find the upper value of the temperature in the building in the time interval $0 \leq t<4 \mathrm{hr}$.
10. (Landing)

A container with mass $M \mathrm{~kg}$ is dropped by a helicopter from height $H \mathrm{~km}$ at time $t=0$, with zero velocity. From the outset, its fall is controlled by gravity and the force of air resistance, $f(v)=-k v$, where v is the current velocity of the container.

In τ seconds after the drop, a parachute opens, resulting in an increase of air resistance up to $F(v)=-K v$. Determine the time T at which the container touches the ground, and its velocity at this moment, if

$$
M=200 \mathrm{~kg}, H=2000 \mathrm{~m}, \tau=20 \mathrm{~s}, k=10 \mathrm{~kg} / \mathrm{s}, \quad \text { and } K=400 \mathrm{~kg} / \mathrm{s}
$$

