1. [-/13 Points] DETAILS SCALC8 13.1.050.

	Two particles travel along the space curves		
	$\mathbf{r}_1(t) = \langle t, t^2, t^3 \rangle$ $\mathbf{r}_2(t) = \langle 1 + 6t, 1 + 30t, 1 + 126t \rangle$. Find the points at which their paths intersect. (If an answer does not exist, enter DNE.)		
	(x, y, z) = ((smaller x-value)		
	(x, y, z) = ((larger x-value)		
	Find the time(s) when the particles collide. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) t = Need Help? Read It		
	Show My Work (Required) @		
	vvnat steps or reasoning dia you user Your work counts towards your score.		
2.	(1 Points] DETAILS SCALC8 13.1.505.XP.		
	Find the limit.		
	$\lim_{t \to \infty} \left\langle \arctan(7t), e^{-8t}, \frac{\ln(t)}{t} \right\rangle$		
3. [1 Points] DETAILS SCALC8 13.1.009.		
Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.			
	$\mathbf{r}(t) = \langle t, 5 - t, 2t \rangle$		
	0 0		
	0 0		

4. [-/1 Points] DETAILS SCALC8 13.1.019.			
Find a vector equation and parametric equations for the line segment that joins P to Q. $P(0, -1, 3), Q(\frac{1}{2}, \frac{1}{3}, \frac{1}{4})$			
vector equation $\mathbf{r}(t) =$ parametric equations $(x(t), y(t), z(t)) = ($			
5. [-/1 Points] DETAILS SCALC8 13.1.044.			
Find a vector function, $\mathbf{r}(t)$, that represents the curve of intersection of the two surfaces. The paraboloid $z = 5x^2 + y^2$ and the parabolic cylinder $y = 3x^2$ $\mathbf{r}(t) =$			
6. [-/4 Points] DETAILS SCALC8 13.2.021. If $r(t) = \langle 6t, 5t^2, 5t^3 \rangle$, find $r'(t)$, $T(1)$, $r''(t)$, and $r'(t) \times r''(t)$.			
$\mathbf{r}'(t) =$			
T(1) =			
$\mathbf{r}''(t) =$			
$\mathbf{r}'(t) \times \mathbf{r}''(t) =$			

10. [-/1 Points] DETAILS SCALC8 13.2.511.XP.			
Evaluate the integral. $\int_{0}^{\pi/2} (3 \sin^{2}(t) \cos(t) \mathbf{i} + 4 \sin(t) \cos^{3}(t) \mathbf{j} + 4 \sin(t) \cos(t) \mathbf{k}) dt$			
11. [-/13 Points] DETAILS SCALC8 13.3.017.MI.			
Consider the vector function given below. $\mathbf{r}(t) = \langle \mathbf{8t}, 5 \cos(t), 5 \sin(t) \rangle$ (a) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$. $\mathbf{T}(t) = $ $\mathbf{N}(t) = $ (b) Use this formula to find the curvature. $\mathbf{x}(t) = $			
Need Help? Read It Watch It Master It Show My Work (Required) @ What steps or reasoning did you use? Your work counts towards your score.			
Find the length of the curve.	13. [-/1 Points] DETAILS SCALC8 13.3.025.		
$\mathbf{r}(t) = 9t\mathbf{i} + 12t^{3/2}\mathbf{j} + 9t^2\mathbf{k}, 0 \le t \le 1$	Find the curvature of $r(t) = \langle 5t, t^2, t^3 \rangle$ at the point (5, 1, 1). $\kappa =$		
14. [-/1 Points] DETAILS SCALC8 13.3.053.			
At what point on the curve $x = t^3$, $y = 12t$, $z = t^4$ is the normal plane parallel to the plane $6x + 24y - 8z = 1$? (x, y, z) = (
15. [-/1 Points] DETAILS SCALC8 13.4.010.			
Find the velocity, acceleration, and speed of a particle with r(t) = (3 cos(t), 6t, 3 sin(t)) v(t) = a(t) = v(t) =	th the given position function.		

Water traveling along a straight portion of a river normally flows fastest in the middle, and the speed slows to almost zero at the banks. Consider a long straight stretch of river flowing north, with parallel banks 40 m apart. If the maximum water speed is 3 m/s, we can use the sine function,

 $f(x) = 3\sin(\pi x/40),$

as a basic model for the rate of water flow x units from the west bank. Suppose a boater would like to pilot the boat to land at the point B on the east bank directly opposite point A. If the boat maintains a constant heading and a constant speed of 5 m/s, determine the angle at which the boat should head. (Round your answer to one decimal place.)

Answer: ______ degrees south of east

