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SOMEWHERE WITHIN THE RAINBOW
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Calculus Needed: Derivatives of trigonometric functions, finding maxima and minima.

Area of Application: Optics, Meteorology.

The Problem: Explaining the Rainbow
My heart leaps up when I behold a rasnbow in the sky...— Wordsworth

Whether it has been raining for just a few hours or for forty days and forty nights,
if the sun appears and raindrops are still in the air, the world is treated to one of nature’s
most vivid spectacles, the rainbow. Imagine the mixture of fear and wonder that ancient
people must have felt on seeing such a sight. These days the wonder is still there, but
certainly the fear has lessened as we understand more of the physics involved in producing
such a display of color in the sky. After setting aside the awe, our curiosity produces
question after question. Why is the rainbow a circular arc? What determines how high it
is in the sky? Why are there colors? Why is there a special order to the colors? Why is
there occasionally a second rainbow above the first? Exactly where is the pot of gold?

Some Early History

The early explanations of the rainbow were understandably mythological in origin.
The Greek goddess Iris was said to use the rainbow as a sign both of warning and of hope.
The word “iridescent” probably comes from the connection to Iris. In African mythology,.
the rainbow was a large snake coming out to graze after the storm. Here again the event is
both a sign of hope and one of fear, for the snake could gobble children that were too close
to the ends of the bow. The ends do appear to touch the earth leading some to claim that
great treasure was buried there. Yet in a less capitalistic vein, many American Indians
saw the bow as a bridge anchored in this world and leading to the next.

In 378 B.C., Anaximenes, a Greek scholar, noted the relation between the rainbow
and the sun. Rather than attributing the bow to celestial powers, he suggested that clouds
bent the sun’s light to produce the arc of colors. Armstotle used careful geometry, but
faulty reflection laws, to establish the circular shape of the bow. Gradually, scholars began
to see that both reflection and refraction of light had something to do with the rainbow
phenomenon. In the fourteenth century, Theodoric of Frieburg and the Persian scholar
Kamal al-Din al Farisi independently decided that drops of rain were the key. They looked
closely at the way a globe of water affected light and were able to give correct qualitative

explanations for the bow.
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The rainbow has piqued the interest of many scholars in each of the last several cen-
tunes. The sixteenth century seems to have produced the most books on the subject, but
few of them were of major importance. As vou might expect, seventeenth century scholars
like Kepler, Descartes, Fermat, and Newton all made significant contributions to the study
of the rainbow. Even today, physicists continue to tidy up the theory. Understanding the
rainbow is so tied with understanding the nature of light that until theories of light are
complete, there will be open questions about the rainbow.

Reflection

Light from the sun, refracted and reflected by water droplets in the atmosphere, forms
the rainbow, so the first step in explaining the phenomenon is to understand how light is
bent by various substances. In 1657, the extraordinary mathematician Pierre de Fermat
turned his attention to the bending of light and proved the main results by postulating
a simple principle. Fermat suggested that in traveling from point P to Q, light follows a
path which minimizes the total travel time.

Fermat’s Principle. Light follows a path which minimizes the total travel time.

Consider first the reflection of light. It helps when discussing geometric problems
with light to imagine that light travels along rays. So suppose we have a source of light

rays at point P in Figure 1. Imagine that we detect one of the rays passing through point

Q after reflecting off a surface. At what point R does the ray reflect off the surface?

P

Figure 1.

Fermat’s principle claims the ray follows 2 path that minimizes the time necessary
to travel from P to Q while reflecting off the surface. Assuming the speed of light in our
example is constant, the point R should be positioned so the path PRQ has minimum
length. Considenng the triangles in the figure, we get the following expression for the path
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length as a function of z:

L(z) = /p* +27 + /2 + (d — 2)°.

To find the minimum path length, we find the derivative L'(z) and set it equal to zero.
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So L'(z) = 0 when sina = sin 8. We should verify that this is 2 minimum by taking the
second derivative (see the exercises). Rather than actually solve for the distance z, it is
more useful to note that the minimum occurs when the sines of the two angles are the
same. Since the angles are both between 0 and #/2, we conclude that the two angles are
equal. For convenience call  the angle of incidence and 3 the angle of reflection.

Law of Reflection. For reflection, the angle of incidence is equal to the angle of reflection.

Note that we have deduced the Law of Reflection from Fermat’s principle of least
time. We have not proved Fermat’s principle, but it does make sense in light of other results
in physics. And in fact, careful experiments have concluded that the Law of Reflection

does hold.

Exercises
1. Determine the value of z that minimizes L(z) in the derivation of the Law of Reflec-
tion.
2. Compute the second derivative and use it to show that we indeed found a minimum

for L(z).

Rei'ractibn

When dealing with reflection, we assumed that the i ght rays were traveling only in
air and therefore maintained a constant speed. However, to attack the rainbow questions,
we need to also understand what happens when light travels through water. It turns out
that the speed of light in water is less than the speed in air. Our derivation of the reflection
law would be identical for 2 mirror and light source submerged id water since the speed of
light would again be constant, but what happens if part of the light’s path is in water and

part is in air?
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Figure 2 shows a new setup where point P is again a source of light rays in air. Now,
however, point Q is in water. We are interested in the path of a light ray that leaves P
and passes through Q. It crosses the air/water interface at the point R. The angle the
path PR makes with the line perpendicular to the water’s surface is called the angle of
incidence and is represented by a. The corresponding angle between the path RQ and the
perpendicular is called the angle of refraction and is represented by B. Fermat’s principle
claims that the point R is positioned so as to make the total time of travel a minimum.
Since the speed changes when the light crosses into water, we need to consider both speeds

in our analysis. "
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Figure 2.

Let ¢, be the speed of light in air and let ¢, be the speed of light in water. Re-
membering that time is distance divided by speed, we calculate that the light ray spends

/2 AL 2 /a2 4+ (d — 2
VPTE inits of time traveling from P to R and ¢+ (d= =)
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from R to Q. Thus the total time is
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units of time traveling

T(z) =

Again to find the minimum, we take the derivative of T(z):
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In other words the ratio of the sines is a constant. Note again that in order to verify that
we have found the minimum we should take the second derivative.

This constant ¢, /¢y, is the ratio of the speed of light in air to the speed of light in
water. In order to calculate it, tables have been compiled that give the ratio of the speed
of light in a vacuum to the speed of light in various media. For example, the ratio of the
speed in a vacuum to the speed in water is about 1.33 and is called the indez of refraction
for water. The index of refraction for air is very close to 1 so the ratio ¢, /c,, is very close

to 1.33.

Law of Refraction. The ratio of the sine of the ang]é of incidence to the sine of the
angle of refraction is a constant.

In our derivation, there was no dependence on direction, so our result would be the
same if we assumed that the source of light was at Q instead of at P. With this observation
we notice that if light travels from one medium to one of higher refractive index, the light
ray bends toward the perpendicular to the surface between the media. (This perpendicular
is often called the normal.) When light travels from one medium to one of lower refractive
index, the ray is bent away from the normal.

Fermat supplied the principle from which we mathematically deduce the Law of Re-
fraction, but it was earlier, in 1621, that a Dutch scientist Willebrord Snell experimentally
discovered the result. Today the Law of Refraction is often called Snell’s law.

Exercise

3. Venfy that we found a minimum for 7{z) in the derivation of the Law of Refraction.

The Rainbow Angle

Rainbows form when raindrops both reflect and refract light from the sun. When
light traveling through the air strikes a drop, some of the light is reflected and some is
refracted as it enters the drop. Part of the light inside the drop is reflected when it strikes
the other side of the drop and part is refracted as it again passes into the air. In general,
when light travels from one medium to another, part of the light is reflected at the interface
and part continues into the second medium where it is refracted. To understand how the
rainbow forms, we need to keep track of the reflections and refractions caused by a drop

of rain.

The shape of a raindrop depends on several factors, but for a good approximation,
it is fairly safe to assume that it is spherical. Look then at Figure 3. Here we see the
cross-section of a drop as a light ray enters it at point A. Some of the light ray will be
reflected, but the figure shows the part that enters the drop. The Law of Refraction says
that this ray will be bent toward the normal since the refractive index of water is larger
than that of air. From geometry, we know that the tangent to the circle at point A is
perpendicular to the radius of the circle through A. Hence, the radius through A is the
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normal at A. In the figure, a is the angle of incidence and f is the angle of refraction.

Figure 3.

The ray continues through the drop and strikes the other side at point B. Here again,
part of the ray is reflected and part continues into the air where it is refracted. In the
figure, we follow the reflected part. At B, the ray is ref zcted so that the angle of incidence
equals the angle of reflection. Here the angle of incidence is the angle between the ray and

" the tangent at B. Notice that this implies that angle ABO equals angle OBC. When the

ray hits the drop’s surface at C, part is reflected, but let’s follow the part that enters the
air and is refracted. Since the ray moves into 2 medium of lower refractive index, it is bent
away from the normal.

Figure 3 traces parts of one particular ray that strikes the drop. At each interface,
another part is either refracted or reflected, and consequently there are many paths a ray
could take in interacting with the drop. In fact, you can imagine a ray that enters the drop
and is repeatedly reflected around inside it. Since at each interface between air and water
part of the ray is reflected and part refracted, when we choose to follow one part we are
following a ray that has less intensity than the originel ray. Each time an interface is hit,
the light intensity decreases. We are therefore interested in rays that strike the interface
only a few times, for this will be the brightest light.

Again looking at the figure, a ray that strikes the drop at A and is simply reflected
will be fairly bright, but as we will see, such a ray does not add to the essential features
of the rainbow since it doesn’t interact with the water. Similarly, a ray that hits at A and
then travels through the drop to exit at B will also be fairly bright, but we would have to
be on the righthand side of the drop to see this light. Rainbows are formed when the sun
is behind us and light from it is reflected in verious ways from the raindrops. So the ray
drawn in the figure is the simplest ray involved in rainbow formation.

Notice that the point A could be anywhere on the left half of the circle. If it is on the
upper half of the circle then the ray exits the drop in the lower half. We are interested in
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how much the ray is deflected once it exits the drop. For example, if the ray comes in the
drop along the diameter of the circle, then the angle of incidence is zero and therefore the
angle of refraction is zero. The ray will reflect off the back of the drop and exit the drop
along the same diameter that it entered on. The total deflection would be 180 degrees
in a clockwise direction. The ray drawn in the figure has been deflected by less than 180
degrees. As the point A moves on the circle, the deflection angle changes. So the angle of
deflection is a function of the angle of incidence. If a is the angle of incidence, let D(a)
represent the angle of deflection.

Because of the symmetry between the upper and lower halves of the the circle, we
might as well focus only on those points A on the upper-left quarter of the circle. For these
points, a varies from 0 to 90 degrees. To determine the total deflection, first consider how
the ray is deflected at the point A. It is rotated clockwise by a — 3 degrees. At B, it is
again rotated clockwise by 180 — 23 degrees. Finally at C the deflection is again o —

degrees. Hence
Dia)=a—F+180—-28+a— =180+ 2a —48.

Notice that D is a function of both a and 5. However, we know from the Law of Refraction
that f can be expressed as a function of a. We will need to keep this in mind when we
take the derivative.

Now D(C) = 180 and as « increases, D(a) at first decreases. But what is interesting
is that D has a minimum. It only decreases so far and then it increases. To find this
minimum, we take the derivative (recalling the chain rule) and get

ds

D’(O:) =2 43&

Remember that, from the Law of Refraction,

sina Ca
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If we differentiate this with respect to a we get

dp

cosa = kcosﬁ-z.

Solving for d3/da and substituting into the expression for D'(a) gives
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Setting the derivative equal to zero we have,
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We want the value of @ which satisfies this equation, so we eliminate f. Squaring both
sides gives

But sinf§ = %sina, so
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Finally we have an expression for the cosine of the incidence angle with minimum deflection.
Since raindrops are water, k = 1.33, so cosa = 0.5063 and a =~ 59.56°. At this incidence
angle, the deflection is D(59.56) &~ 137.5°. To establish that this Is a2 minimum we can
check the sign of the second derivative (see the exercises).

- We have found the incidence angle, a ~ 59.58°, that gives the minimurn deflection.
Since the derivative of the deflection function is zero at this special angle, we know that
the change in deflection angle divided by the change in incidence angle is nearly zero near
a & 59.58°. In other words, many rays with incidence angle near 59.58° get deflected by
about the same amount. Rays further away from this critical angle get spread out more.
So if we are looking at the deflected light, then rays coming from the direction of minimum
deflection should appear the brightest since they are spread out the least. This is where
the rainbow appears. The ray whase incidence angle is a & 59.58° is called the reinbow
ray and 42.5° (= 180 — 137.5) is called the rainbow angle. The rainbow angle is the angle
from the horizontal at which an observer should see the rainbow, if the rays of sunlight
are horizontal. Figure 4 shows how the rainbow angle is related to the sun, observer, and
the raindrops.
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Drops inclined 42.5° from an observer appear brighter than those with less inclination.
For drops higher in the sky, the deflection angle would have to be less than 137.5° and
since we discovered this angle is a minimum, no rays of the type we have been tracing
come from drops higher in the sky. Any light coming from high in the sky must come from
rays that have more than one (or none) internal reflections.

In the early part of the seventeenth century, Descartes carried out an analysis leading
to discovery of the rainbow angle. Since the techniques of calculus were not available to
him, he had to calculate the deflection of many different rays and even then did not have
a nice expression for the incidence angle of minimum deflection.

Now that we know that light scattered by a drop is brighter at a certain angle of
observation, any drop in the sky at the correct angle will show some brightness. Imagine
the observer at the vertex of a cone with vertex angle equal to twice the rainbow angle.
Cutting the cone with a plane perpendicular to its axis gives a circular cross-section and
every raindrop on this circle forms the rainbow angle with the observer. Consequently,
the observer should see a bright circular arc in the sky. This is the rainbow. Notice that
the rainbow may be higher or lower in the sky depending on how high the sun is. To an
observer on the ground, the rainbow is at most one half of a circle. However, to an observer
flying in a plane, the rainbow may form an entire circle.

Exercises

4. Vérify that we found a minimum deflection angle by checking the second derivative.
(Hint: You can find the second derivative by first finding the second derivative of
with respect to a. The trigonometric formula for sin(f — «) will be helpful.)

Sketch the function D(a) for a between 0 and 90 degrees.

6. If an observer sees the rainbow at an angle of 25 degrees from the horizontal, what

.U'T

is the sun’s angle of inclination?

Colors

The geometry of light rays that we have considered so far accounts for a circular arc
;of brighter light in the sky. But where are the colors? Actually the answer is quite simple
now. Light is really an electromagnetic wave and therefore we can talk about its frequency
and wavelength. There is a wide spectrum of wavelengths, but our eyes are sensitive only to
wavelengths in the range from about 7000 angstroms to about 4240 angstroms. Light with
a wavelength of about 6470 to 7000 angstroms is perceived as red, and light in the 4000 to
4240 range is violet. Other colors fall between these two. Since the wave characteristic of
these two colors are different, the refractive index of water varies depending on which color
of light is passing through it. When red light with wavelength 6563 angstroms travels from
air to water, the refractive index is about 1.3318. With violet light (4047 angstroms), the
index increases to about 1.3435. T

Sunlight is really 2 wide range of wavelengths. When it strikes a raindrop, wave-
lengths in the red range are refracted differently from those in the violet range. The other

W —————
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colors like blue and yellow fall between these two ranges and are refracted to various degrees
between the two extremes. Consequently the light is actually spread into its constituent
colors.

Now we need to repeat the calculation done to find the minimum angle of deflection.
For red light, the minimum deflection is 137.7° and for violet light it is 139.4°. These
values give rainbow angles of 42.3° and 40.6° respectively. In other words, when looking
in the sky, the observer will see a circular arc of red light at a slightly higher inclination
than the circular arc of violet light. The other wavelengths that we recognize as colors will
form bows between these two. The order is red, orange, yellow, green, blue, indigo, and
violet. (Taking the first letters gives a mnemonic: ROY G. BIV).

Newton was the first to make these careful calculatjons that explain the colors in the
rainbow. By subtracting the rainbow angles for red and violet light it looks like the width
of the bow is 1.7 degrees. Actually all these results assume that the rays from the sun are
all parallel. To correct for the fact that the rays are not quite parallel, Newton allowed 0.5
degrees for the angular diameter of the sun and concluded that the rainbow width should
be 2.2 degrees. This is in good agreement with actual observation although as we shall see
later, the width of the bow does vary.

The Secondary Bow

Recall that the rainbow ray we traced was reflected once by the back of the raindrop.
Other rays are reflected several times inside the drop. Each reflection reduces the intensity
of the ray, but it is worth tracking at least those rays that have two internal reflections.
To do this, look at Figure 5.

Figure 5.

This time we will follow rays incident on the bottom half of the drop since these
rays are the ones that reach the observer. Keeping track of the deflections, we notice that
the ray is rotated counter-clockwise at each of the points A, B, C, and D. The amount of
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rotation is similar to the analysis we did before, so this time we get

Total deflection = (a — 8) + (180 — 28) + (180 — 28) + (e —B)
= 360 + 2a — 6.

Since a 360 degree deflection means the ray continues in the same direction it started in,
we can disregard the 360 and consider the deflection to be 2a — 68. However, this is a
counter-clockwise deflection and in order to compare it to the deflection for the rays with
single internal reflections, we need to change this to a clockwise deflection. This is easily
done by multiplying by —1. This gives us a new deflection function, D, for rays with two

internal reflections:
Dy(a) =68 —2a.

Notice that D,(0) = 0 and that D, begins to increase as « increases. In order to
determine if this trend continues, we find any critical points by taking the derivative and
setting it equal to zero. This time the critical point satisfies

k2 -1
5

Cosx =

With k& = 1.33, we obtain the critical point & = 71.94°, and D,(71.94) = 129.9°. At this
new critical point, D3 is actually a maximum.

Hence for rays with two internal reflections, the maximum deflection angle is about
130°. In other words, raindrops that are inclined about 50°(i.e. 180° — 130°) from the
observer will appear bright, although not as bright as those at 42°. This secondary arc of
brightness is another bow which is dimmer that the primary bow and, unless conditions
are right, is often too dim to see. Moreover, since D5 is concave down, when we compare
the maximum defiection for red light with that for violet light, we find that red light is
deflected the most so the colors in the secondary bow appear in reverse order from those
in the primary bow.

Notice also that the maximum of D, is about 130° while the minimum of D is about
138°. In other words, none of the rays with one or two internal reflections are deflected
in the range 130 to 138 degrees. This means that the region between the primary and
secondary bows is darker than the surrounding sky. It isn’t totally black since light comes
from rays that are reflected and refracted in many other ways. This darkened band is
called Alexander’s band after Alexander of Aphrodisias, a follower of Aristotle. Alexander
deduced from Aristotle’s theory of the rainbow that the region between the bows should
be particularly bright. Since it wasn’t, Alexander saw the need for a revised theory even

though he couldn’t supply one.

Exercises

7. Verify that the critical point for D, does occur at the point where cosa = g

8. Sketch the graph of D».
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9. Determine the maximum deflection angle for red light and violet light.

10. Using the same procedure as above, find the deflection function D), for rays that have
n internal reflections. Find the critical point for this function. Theoretically, each of
these classes of rays gives rise to another rainbow. They are rarely seen in the sky
because they are so dim, but often one can see the first few bows in a laboratory

set-up.
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